qemu-patch-raspberry4/hw/vfio/pci-quirks.c
Alex Williamson 954258a5f1 vfio/pci: Rework RTL8168 quirk
Another rework of this quirk, this time to update to the new quirk
structure.  We can handle the address and data registers with
separate MemoryRegions and a quirk specific data structure, making the
code much more understandable.

Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2015-09-23 13:04:47 -06:00

1004 lines
35 KiB
C

/*
* device quirks for PCI devices
*
* Copyright Red Hat, Inc. 2012-2015
*
* Authors:
* Alex Williamson <alex.williamson@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*/
#include "pci.h"
#include "trace.h"
#include "qemu/range.h"
#define PCI_ANY_ID (~0)
/* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
{
PCIDevice *pdev = &vdev->pdev;
return (vendor == PCI_ANY_ID ||
vendor == pci_get_word(pdev->config + PCI_VENDOR_ID)) &&
(device == PCI_ANY_ID ||
device == pci_get_word(pdev->config + PCI_DEVICE_ID));
}
/*
* List of device ids/vendor ids for which to disable
* option rom loading. This avoids the guest hangs during rom
* execution as noticed with the BCM 57810 card for lack of a
* more better way to handle such issues.
* The user can still override by specifying a romfile or
* rombar=1.
* Please see https://bugs.launchpad.net/qemu/+bug/1284874
* for an analysis of the 57810 card hang. When adding
* a new vendor id/device id combination below, please also add
* your card/environment details and information that could
* help in debugging to the bug tracking this issue
*/
static const struct {
uint32_t vendor;
uint32_t device;
} romblacklist[] = {
{ 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
};
bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
{
int i;
for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
romblacklist[i].vendor,
romblacklist[i].device);
return true;
}
}
return false;
}
/*
* Device specific quirks
*/
/* Is range1 fully contained within range2? */
static bool vfio_range_contained(uint64_t first1, uint64_t len1,
uint64_t first2, uint64_t len2) {
return (first1 >= first2 && first1 + len1 <= first2 + len2);
}
static bool vfio_flags_enabled(uint8_t flags, uint8_t mask)
{
return (mask && (flags & mask) == mask);
}
static uint64_t vfio_generic_window_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOLegacyQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
uint64_t data;
if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
ranges_overlap(addr, size,
quirk->data.data_offset, quirk->data.data_size)) {
hwaddr offset = addr - quirk->data.data_offset;
if (!vfio_range_contained(addr, size, quirk->data.data_offset,
quirk->data.data_size)) {
hw_error("%s: window data read not fully contained: %s",
__func__, memory_region_name(quirk->mem));
}
data = vfio_pci_read_config(&vdev->pdev,
quirk->data.address_val + offset, size);
trace_vfio_generic_window_quirk_read(memory_region_name(quirk->mem),
vdev->vbasedev.name,
quirk->data.bar,
addr, size, data);
} else {
data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
addr + quirk->data.base_offset, size);
}
return data;
}
static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOLegacyQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
if (ranges_overlap(addr, size,
quirk->data.address_offset, quirk->data.address_size)) {
if (addr != quirk->data.address_offset) {
hw_error("%s: offset write into address window: %s",
__func__, memory_region_name(quirk->mem));
}
if ((data & ~quirk->data.address_mask) == quirk->data.address_match) {
quirk->data.flags |= quirk->data.write_flags |
quirk->data.read_flags;
quirk->data.address_val = data & quirk->data.address_mask;
} else {
quirk->data.flags &= ~(quirk->data.write_flags |
quirk->data.read_flags);
}
}
if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
ranges_overlap(addr, size,
quirk->data.data_offset, quirk->data.data_size)) {
hwaddr offset = addr - quirk->data.data_offset;
if (!vfio_range_contained(addr, size, quirk->data.data_offset,
quirk->data.data_size)) {
hw_error("%s: window data write not fully contained: %s",
__func__, memory_region_name(quirk->mem));
}
vfio_pci_write_config(&vdev->pdev,
quirk->data.address_val + offset, data, size);
trace_vfio_generic_window_quirk_write(memory_region_name(quirk->mem),
vdev->vbasedev.name,
quirk->data.bar,
addr, data, size);
return;
}
vfio_region_write(&vdev->bars[quirk->data.bar].region,
addr + quirk->data.base_offset, data, size);
}
static const MemoryRegionOps vfio_generic_window_quirk = {
.read = vfio_generic_window_quirk_read,
.write = vfio_generic_window_quirk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static uint64_t vfio_generic_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOLegacyQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
uint64_t data;
if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
if (!vfio_range_contained(addr, size, offset,
quirk->data.address_mask + 1)) {
hw_error("%s: read not fully contained: %s",
__func__, memory_region_name(quirk->mem));
}
data = vfio_pci_read_config(&vdev->pdev, addr - offset, size);
trace_vfio_generic_quirk_read(memory_region_name(quirk->mem),
vdev->vbasedev.name, quirk->data.bar,
addr + base, size, data);
} else {
data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
addr + base, size);
}
return data;
}
static void vfio_generic_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOLegacyQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
if (!vfio_range_contained(addr, size, offset,
quirk->data.address_mask + 1)) {
hw_error("%s: write not fully contained: %s",
__func__, memory_region_name(quirk->mem));
}
vfio_pci_write_config(&vdev->pdev, addr - offset, data, size);
trace_vfio_generic_quirk_write(memory_region_name(quirk->mem),
vdev->vbasedev.name, quirk->data.bar,
addr + base, data, size);
} else {
vfio_region_write(&vdev->bars[quirk->data.bar].region,
addr + base, data, size);
}
}
static const MemoryRegionOps vfio_generic_quirk = {
.read = vfio_generic_quirk_read,
.write = vfio_generic_quirk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
#define PCI_VENDOR_ID_ATI 0x1002
/*
* Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
* through VGA register 0x3c3. On newer cards, the I/O port BAR is always
* BAR4 (older cards like the X550 used BAR1, but we don't care to support
* those). Note that on bare metal, a read of 0x3c3 doesn't always return the
* I/O port BAR address. Originally this was coded to return the virtual BAR
* address only if the physical register read returns the actual BAR address,
* but users have reported greater success if we return the virtual address
* unconditionally.
*/
static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOPCIDevice *vdev = opaque;
uint64_t data = vfio_pci_read_config(&vdev->pdev,
PCI_BASE_ADDRESS_4 + 1, size);
trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
return data;
}
static const MemoryRegionOps vfio_ati_3c3_quirk = {
.read = vfio_ati_3c3_quirk_read,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
{
VFIOQuirk *quirk;
/*
* As long as the BAR is >= 256 bytes it will be aligned such that the
* lower byte is always zero. Filter out anything else, if it exists.
*/
if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->mem = g_malloc0_n(sizeof(MemoryRegion), 1);
quirk->nr_mem = 1;
memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
"vfio-ati-3c3-quirk", 1);
memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
quirk, next);
trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
}
/*
* Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI
* config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
* the MMIO space directly, but a window to this space is provided through
* I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
* data register. When the address is programmed to a range of 0x4000-0x4fff
* PCI configuration space is available. Experimentation seems to indicate
* that only read-only access is provided, but we drop writes when the window
* is enabled to config space nonetheless.
*/
static void vfio_probe_ati_bar4_window_quirk(VFIOPCIDevice *vdev, int nr)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
VFIOLegacyQuirk *legacy;
if (!vdev->has_vga || nr != 4 ||
pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->data = legacy = g_malloc0(sizeof(*legacy));
quirk->mem = legacy->mem = g_malloc0_n(sizeof(MemoryRegion), 1);
quirk->nr_mem = 1;
legacy->vdev = vdev;
legacy->data.address_size = 4;
legacy->data.data_offset = 4;
legacy->data.data_size = 4;
legacy->data.address_match = 0x4000;
legacy->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
legacy->data.bar = nr;
legacy->data.read_flags = legacy->data.write_flags = 1;
memory_region_init_io(quirk->mem, OBJECT(vdev),
&vfio_generic_window_quirk, legacy,
"vfio-ati-bar4-window-quirk", 8);
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
legacy->data.base_offset, quirk->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_probe_ati_bar4_window_quirk(vdev->vbasedev.name);
}
/*
* Trap the BAR2 MMIO window to config space as well.
*/
static void vfio_probe_ati_bar2_4000_quirk(VFIOPCIDevice *vdev, int nr)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
VFIOLegacyQuirk *legacy;
/* Only enable on newer devices where BAR2 is 64bit */
if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 ||
pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->data = legacy = g_malloc0(sizeof(*legacy));
quirk->mem = legacy->mem = g_malloc0_n(sizeof(MemoryRegion), 1);
quirk->nr_mem = 1;
legacy->vdev = vdev;
legacy->data.flags = legacy->data.read_flags = legacy->data.write_flags = 1;
legacy->data.address_match = 0x4000;
legacy->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
legacy->data.bar = nr;
memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_generic_quirk, legacy,
"vfio-ati-bar2-4000-quirk",
TARGET_PAGE_ALIGN(legacy->data.address_mask + 1));
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
legacy->data.address_match & TARGET_PAGE_MASK,
quirk->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_probe_ati_bar2_4000_quirk(vdev->vbasedev.name);
}
/*
* Older ATI/AMD cards like the X550 have a similar window to that above.
* I/O port BAR1 provides a window to a mirror of PCI config space located
* in BAR2 at offset 0xf00. We don't care to support such older cards, but
* note it for future reference.
*/
#define PCI_VENDOR_ID_NVIDIA 0x10de
/*
* Nvidia has several different methods to get to config space, the
* nouveu project has several of these documented here:
* https://github.com/pathscale/envytools/tree/master/hwdocs
*
* The first quirk is actually not documented in envytools and is found
* on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
* NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
* the mirror of PCI config space found at BAR0 offset 0x1800. The access
* sequence first writes 0x338 to I/O port 0x3d4. The target offset is
* then written to 0x3d0. Finally 0x538 is written for a read and 0x738
* is written for a write to 0x3d4. The BAR0 offset is then accessible
* through 0x3d0. This quirk doesn't seem to be necessary on newer cards
* that use the I/O port BAR5 window but it doesn't hurt to leave it.
*/
typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
static const char *nv3d0_states[] = { "NONE", "SELECT",
"WINDOW", "READ", "WRITE" };
typedef struct VFIONvidia3d0Quirk {
VFIOPCIDevice *vdev;
VFIONvidia3d0State state;
uint32_t offset;
} VFIONvidia3d0Quirk;
static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIONvidia3d0Quirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
quirk->state = NONE;
return vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
addr + 0x14, size);
}
static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIONvidia3d0Quirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
VFIONvidia3d0State old_state = quirk->state;
quirk->state = NONE;
switch (data) {
case 0x338:
if (old_state == NONE) {
quirk->state = SELECT;
trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
nv3d0_states[quirk->state]);
}
break;
case 0x538:
if (old_state == WINDOW) {
quirk->state = READ;
trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
nv3d0_states[quirk->state]);
}
break;
case 0x738:
if (old_state == WINDOW) {
quirk->state = WRITE;
trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
nv3d0_states[quirk->state]);
}
break;
}
vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
addr + 0x14, data, size);
}
static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
.read = vfio_nvidia_3d4_quirk_read,
.write = vfio_nvidia_3d4_quirk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIONvidia3d0Quirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
VFIONvidia3d0State old_state = quirk->state;
uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
addr + 0x10, size);
quirk->state = NONE;
if (old_state == READ &&
(quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
data = vfio_pci_read_config(&vdev->pdev, offset, size);
trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
offset, size, data);
}
return data;
}
static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIONvidia3d0Quirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
VFIONvidia3d0State old_state = quirk->state;
quirk->state = NONE;
if (old_state == SELECT) {
quirk->offset = (uint32_t)data;
quirk->state = WINDOW;
trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
nv3d0_states[quirk->state]);
} else if (old_state == WRITE) {
if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
vfio_pci_write_config(&vdev->pdev, offset, data, size);
trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
offset, data, size);
return;
}
}
vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
addr + 0x10, data, size);
}
static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
.read = vfio_nvidia_3d0_quirk_read,
.write = vfio_nvidia_3d0_quirk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
{
VFIOQuirk *quirk;
VFIONvidia3d0Quirk *data;
if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
!vdev->bars[1].region.size) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->data = data = g_malloc0(sizeof(*data));
quirk->mem = g_malloc0_n(sizeof(MemoryRegion), 2);
quirk->nr_mem = 2;
data->vdev = vdev;
memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
data, "vfio-nvidia-3d4-quirk", 2);
memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
data, "vfio-nvidia-3d0-quirk", 2);
memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
quirk, next);
trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
}
/*
* The second quirk is documented in envytools. The I/O port BAR5 is just
* a set of address/data ports to the MMIO BARs. The BAR we care about is
* again BAR0. This backdoor is apparently a bit newer than the one above
* so we need to not only trap 256 bytes @0x1800, but all of PCI config
* space, including extended space is available at the 4k @0x88000.
*/
enum {
NV_BAR5_ADDRESS = 0x1,
NV_BAR5_ENABLE = 0x2,
NV_BAR5_MASTER = 0x4,
NV_BAR5_VALID = 0x7,
};
static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOLegacyQuirk *quirk = opaque;
switch (addr) {
case 0x0:
if (data & 0x1) {
quirk->data.flags |= NV_BAR5_MASTER;
} else {
quirk->data.flags &= ~NV_BAR5_MASTER;
}
break;
case 0x4:
if (data & 0x1) {
quirk->data.flags |= NV_BAR5_ENABLE;
} else {
quirk->data.flags &= ~NV_BAR5_ENABLE;
}
break;
case 0x8:
if (quirk->data.flags & NV_BAR5_MASTER) {
if ((data & ~0xfff) == 0x88000) {
quirk->data.flags |= NV_BAR5_ADDRESS;
quirk->data.address_val = data & 0xfff;
} else if ((data & ~0xff) == 0x1800) {
quirk->data.flags |= NV_BAR5_ADDRESS;
quirk->data.address_val = data & 0xff;
} else {
quirk->data.flags &= ~NV_BAR5_ADDRESS;
}
}
break;
}
vfio_generic_window_quirk_write(opaque, addr, data, size);
}
static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = {
.read = vfio_generic_window_quirk_read,
.write = vfio_nvidia_bar5_window_quirk_write,
.valid.min_access_size = 4,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_probe_nvidia_bar5_window_quirk(VFIOPCIDevice *vdev, int nr)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
VFIOLegacyQuirk *legacy;
if (!vdev->has_vga || nr != 5 ||
pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->data = legacy = g_malloc0(sizeof(*legacy));
quirk->mem = legacy->mem = g_malloc0_n(sizeof(MemoryRegion), 1);
quirk->nr_mem = 1;
legacy->vdev = vdev;
legacy->data.read_flags = legacy->data.write_flags = NV_BAR5_VALID;
legacy->data.address_offset = 0x8;
legacy->data.address_size = 0; /* actually 4, but avoids generic code */
legacy->data.data_offset = 0xc;
legacy->data.data_size = 4;
legacy->data.bar = nr;
memory_region_init_io(quirk->mem, OBJECT(vdev),
&vfio_nvidia_bar5_window_quirk, legacy,
"vfio-nvidia-bar5-window-quirk", 16);
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
0, quirk->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_probe_nvidia_bar5_window_quirk(vdev->vbasedev.name);
}
static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOLegacyQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
PCIDevice *pdev = &vdev->pdev;
hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
vfio_generic_quirk_write(opaque, addr, data, size);
/*
* Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
* MSI capability ID register. Both the ID and next register are
* read-only, so we allow writes covering either of those to real hw.
* NB - only fixed for the 0x88000 MMIO window.
*/
if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
vfio_region_write(&vdev->bars[quirk->data.bar].region,
addr + base, data, size);
}
}
static const MemoryRegionOps vfio_nvidia_88000_quirk = {
.read = vfio_generic_quirk_read,
.write = vfio_nvidia_88000_quirk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
/*
* Finally, BAR0 itself. We want to redirect any accesses to either
* 0x1800 or 0x88000 through the PCI config space access functions.
*
* NB - quirk at a page granularity or else they don't seem to work when
* BARs are mmap'd
*
* Here's offset 0x88000...
*/
static void vfio_probe_nvidia_bar0_88000_quirk(VFIOPCIDevice *vdev, int nr)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
VFIOLegacyQuirk *legacy;
uint16_t vendor, class;
vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA ||
class != PCI_CLASS_DISPLAY_VGA) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->data = legacy = g_malloc0(sizeof(*legacy));
quirk->mem = legacy->mem = g_malloc0_n(sizeof(MemoryRegion), 1);
quirk->nr_mem = 1;
legacy->vdev = vdev;
legacy->data.flags = legacy->data.read_flags = legacy->data.write_flags = 1;
legacy->data.address_match = 0x88000;
legacy->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
legacy->data.bar = nr;
memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk,
legacy, "vfio-nvidia-bar0-88000-quirk",
TARGET_PAGE_ALIGN(legacy->data.address_mask + 1));
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
legacy->data.address_match & TARGET_PAGE_MASK,
quirk->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_probe_nvidia_bar0_88000_quirk(vdev->vbasedev.name);
}
/*
* And here's the same for BAR0 offset 0x1800...
*/
static void vfio_probe_nvidia_bar0_1800_quirk(VFIOPCIDevice *vdev, int nr)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
VFIOLegacyQuirk *legacy;
if (!vdev->has_vga || nr != 0 ||
pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
return;
}
/* Log the chipset ID */
trace_vfio_probe_nvidia_bar0_1800_quirk_id(
(unsigned int)(vfio_region_read(&vdev->bars[0].region, 0, 4) >> 20)
& 0xff);
quirk = g_malloc0(sizeof(*quirk));
quirk->data = legacy = g_malloc0(sizeof(*legacy));
quirk->mem = legacy->mem = g_malloc0_n(sizeof(MemoryRegion), 1);
quirk->nr_mem = 1;
legacy->vdev = vdev;
legacy->data.flags = legacy->data.read_flags = legacy->data.write_flags = 1;
legacy->data.address_match = 0x1800;
legacy->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
legacy->data.bar = nr;
memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_generic_quirk, legacy,
"vfio-nvidia-bar0-1800-quirk",
TARGET_PAGE_ALIGN(legacy->data.address_mask + 1));
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
legacy->data.address_match & TARGET_PAGE_MASK,
quirk->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_probe_nvidia_bar0_1800_quirk(vdev->vbasedev.name);
}
/*
* TODO - Some Nvidia devices provide config access to their companion HDA
* device and even to their parent bridge via these config space mirrors.
* Add quirks for those regions.
*/
#define PCI_VENDOR_ID_REALTEK 0x10ec
/*
* RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
* offset 0x70 there is a dword data register, offset 0x74 is a dword address
* register. According to the Linux r8169 driver, the MSI-X table is addressed
* when the "type" portion of the address register is set to 0x1. This appears
* to be bits 16:30. Bit 31 is both a write indicator and some sort of
* "address latched" indicator. Bits 12:15 are a mask field, which we can
* ignore because the MSI-X table should always be accessed as a dword (full
* mask). Bits 0:11 is offset within the type.
*
* Example trace:
*
* Read from MSI-X table offset 0
* vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
* vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
* vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
*
* Write 0xfee00000 to MSI-X table offset 0
* vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
* vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
* vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
*/
typedef struct VFIOrtl8168Quirk {
VFIOPCIDevice *vdev;
uint32_t addr;
uint32_t data;
bool enabled;
} VFIOrtl8168Quirk;
static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOrtl8168Quirk *rtl = opaque;
VFIOPCIDevice *vdev = rtl->vdev;
uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
if (rtl->enabled) {
data = rtl->addr ^ 0x80000000U; /* latch/complete */
trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
}
return data;
}
static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOrtl8168Quirk *rtl = opaque;
VFIOPCIDevice *vdev = rtl->vdev;
rtl->enabled = false;
if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
rtl->enabled = true;
rtl->addr = (uint32_t)data;
if (data & 0x80000000U) { /* Do write */
if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
hwaddr offset = data & 0xfff;
uint64_t val = rtl->data;
trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
(uint16_t)offset, val);
/* Write to the proper guest MSI-X table instead */
memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
offset, val, size,
MEMTXATTRS_UNSPECIFIED);
}
return; /* Do not write guest MSI-X data to hardware */
}
}
vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
}
static const MemoryRegionOps vfio_rtl_address_quirk = {
.read = vfio_rtl8168_quirk_address_read,
.write = vfio_rtl8168_quirk_address_write,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOrtl8168Quirk *rtl = opaque;
VFIOPCIDevice *vdev = rtl->vdev;
uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
hwaddr offset = rtl->addr & 0xfff;
memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
&data, size, MEMTXATTRS_UNSPECIFIED);
trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
}
return data;
}
static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOrtl8168Quirk *rtl = opaque;
VFIOPCIDevice *vdev = rtl->vdev;
rtl->data = (uint32_t)data;
vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
}
static const MemoryRegionOps vfio_rtl_data_quirk = {
.read = vfio_rtl8168_quirk_data_read,
.write = vfio_rtl8168_quirk_data_write,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
{
VFIOQuirk *quirk;
VFIOrtl8168Quirk *rtl;
if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->mem = g_malloc0_n(sizeof(MemoryRegion), 2);
quirk->nr_mem = 2;
quirk->data = rtl = g_malloc0(sizeof(*rtl));
rtl->vdev = vdev;
memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
&vfio_rtl_address_quirk, rtl,
"vfio-rtl8168-window-address-quirk", 4);
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
0x74, &quirk->mem[0], 1);
memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
&vfio_rtl_data_quirk, rtl,
"vfio-rtl8168-window-data-quirk", 4);
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
0x70, &quirk->mem[1], 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
}
/*
* Common quirk probe entry points.
*/
void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
{
vfio_vga_probe_ati_3c3_quirk(vdev);
vfio_vga_probe_nvidia_3d0_quirk(vdev);
}
void vfio_vga_quirk_teardown(VFIOPCIDevice *vdev)
{
VFIOQuirk *quirk;
int i, j;
for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
QLIST_FOREACH(quirk, &vdev->vga.region[i].quirks, next) {
for (j = 0; j < quirk->nr_mem; j++) {
memory_region_del_subregion(&vdev->vga.region[i].mem,
&quirk->mem[j]);
}
}
}
}
void vfio_vga_quirk_free(VFIOPCIDevice *vdev)
{
int i, j;
for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) {
VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks);
QLIST_REMOVE(quirk, next);
for (j = 0; j < quirk->nr_mem; j++) {
object_unparent(OBJECT(&quirk->mem[j]));
}
g_free(quirk->mem);
g_free(quirk->data);
g_free(quirk);
}
}
}
void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
{
vfio_probe_ati_bar4_window_quirk(vdev, nr);
vfio_probe_ati_bar2_4000_quirk(vdev, nr);
vfio_probe_nvidia_bar5_window_quirk(vdev, nr);
vfio_probe_nvidia_bar0_88000_quirk(vdev, nr);
vfio_probe_nvidia_bar0_1800_quirk(vdev, nr);
vfio_probe_rtl8168_bar2_quirk(vdev, nr);
}
void vfio_bar_quirk_teardown(VFIOPCIDevice *vdev, int nr)
{
VFIOBAR *bar = &vdev->bars[nr];
VFIOQuirk *quirk;
int i;
QLIST_FOREACH(quirk, &bar->quirks, next) {
for (i = 0; i < quirk->nr_mem; i++) {
memory_region_del_subregion(&bar->region.mem, &quirk->mem[i]);
}
}
}
void vfio_bar_quirk_free(VFIOPCIDevice *vdev, int nr)
{
VFIOBAR *bar = &vdev->bars[nr];
int i;
while (!QLIST_EMPTY(&bar->quirks)) {
VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
QLIST_REMOVE(quirk, next);
for (i = 0; i < quirk->nr_mem; i++) {
object_unparent(OBJECT(&quirk->mem[i]));
}
g_free(quirk->mem);
g_free(quirk->data);
g_free(quirk);
}
}