qemu-patch-raspberry4/hw/arm/npcm7xx.c
Hao Wu 1e943c586a hw/misc: Add a PWM module for NPCM7XX
The PWM module is part of NPCM7XX module. Each NPCM7XX module has two
identical PWM modules. Each module contains 4 PWM entries. Each PWM has
two outputs: frequency and duty_cycle. Both are computed using inputs
from software side.

This module does not model detail pulse signals since it is expensive.
It also does not model interrupts and watchdogs that are dependant on
the detail models. The interfaces for these are left in the module so
that anyone in need for these functionalities can implement on their
own.

The user can read the duty cycle and frequency using qom-get command.

Reviewed-by: Havard Skinnemoen <hskinnemoen@google.com>
Reviewed-by: Tyrone Ting <kfting@nuvoton.com>
Signed-off-by: Hao Wu <wuhaotsh@google.com>
Message-id: 20210108190945.949196-5-wuhaotsh@google.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-01-12 21:19:02 +00:00

702 lines
27 KiB
C

/*
* Nuvoton NPCM7xx SoC family.
*
* Copyright 2020 Google LLC
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "qemu/osdep.h"
#include "exec/address-spaces.h"
#include "hw/arm/boot.h"
#include "hw/arm/npcm7xx.h"
#include "hw/char/serial.h"
#include "hw/loader.h"
#include "hw/misc/unimp.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "qemu/units.h"
#include "sysemu/sysemu.h"
/*
* This covers the whole MMIO space. We'll use this to catch any MMIO accesses
* that aren't handled by any device.
*/
#define NPCM7XX_MMIO_BA (0x80000000)
#define NPCM7XX_MMIO_SZ (0x7ffd0000)
/* OTP key storage and fuse strap array */
#define NPCM7XX_OTP1_BA (0xf0189000)
#define NPCM7XX_OTP2_BA (0xf018a000)
/* Core system modules. */
#define NPCM7XX_L2C_BA (0xf03fc000)
#define NPCM7XX_CPUP_BA (0xf03fe000)
#define NPCM7XX_GCR_BA (0xf0800000)
#define NPCM7XX_CLK_BA (0xf0801000)
#define NPCM7XX_MC_BA (0xf0824000)
#define NPCM7XX_RNG_BA (0xf000b000)
/* USB Host modules */
#define NPCM7XX_EHCI_BA (0xf0806000)
#define NPCM7XX_OHCI_BA (0xf0807000)
/* ADC Module */
#define NPCM7XX_ADC_BA (0xf000c000)
/* Internal AHB SRAM */
#define NPCM7XX_RAM3_BA (0xc0008000)
#define NPCM7XX_RAM3_SZ (4 * KiB)
/* Memory blocks at the end of the address space */
#define NPCM7XX_RAM2_BA (0xfffd0000)
#define NPCM7XX_RAM2_SZ (128 * KiB)
#define NPCM7XX_ROM_BA (0xffff0000)
#define NPCM7XX_ROM_SZ (64 * KiB)
/* Clock configuration values to be fixed up when bypassing bootloader */
/* Run PLL1 at 1600 MHz */
#define NPCM7XX_PLLCON1_FIXUP_VAL (0x00402101)
/* Run the CPU from PLL1 and UART from PLL2 */
#define NPCM7XX_CLKSEL_FIXUP_VAL (0x004aaba9)
/*
* Interrupt lines going into the GIC. This does not include internal Cortex-A9
* interrupts.
*/
enum NPCM7xxInterrupt {
NPCM7XX_ADC_IRQ = 0,
NPCM7XX_UART0_IRQ = 2,
NPCM7XX_UART1_IRQ,
NPCM7XX_UART2_IRQ,
NPCM7XX_UART3_IRQ,
NPCM7XX_TIMER0_IRQ = 32, /* Timer Module 0 */
NPCM7XX_TIMER1_IRQ,
NPCM7XX_TIMER2_IRQ,
NPCM7XX_TIMER3_IRQ,
NPCM7XX_TIMER4_IRQ,
NPCM7XX_TIMER5_IRQ, /* Timer Module 1 */
NPCM7XX_TIMER6_IRQ,
NPCM7XX_TIMER7_IRQ,
NPCM7XX_TIMER8_IRQ,
NPCM7XX_TIMER9_IRQ,
NPCM7XX_TIMER10_IRQ, /* Timer Module 2 */
NPCM7XX_TIMER11_IRQ,
NPCM7XX_TIMER12_IRQ,
NPCM7XX_TIMER13_IRQ,
NPCM7XX_TIMER14_IRQ,
NPCM7XX_WDG0_IRQ = 47, /* Timer Module 0 Watchdog */
NPCM7XX_WDG1_IRQ, /* Timer Module 1 Watchdog */
NPCM7XX_WDG2_IRQ, /* Timer Module 2 Watchdog */
NPCM7XX_EHCI_IRQ = 61,
NPCM7XX_OHCI_IRQ = 62,
NPCM7XX_PWM0_IRQ = 93, /* PWM module 0 */
NPCM7XX_PWM1_IRQ, /* PWM module 1 */
NPCM7XX_GPIO0_IRQ = 116,
NPCM7XX_GPIO1_IRQ,
NPCM7XX_GPIO2_IRQ,
NPCM7XX_GPIO3_IRQ,
NPCM7XX_GPIO4_IRQ,
NPCM7XX_GPIO5_IRQ,
NPCM7XX_GPIO6_IRQ,
NPCM7XX_GPIO7_IRQ,
};
/* Total number of GIC interrupts, including internal Cortex-A9 interrupts. */
#define NPCM7XX_NUM_IRQ (160)
/* Register base address for each Timer Module */
static const hwaddr npcm7xx_tim_addr[] = {
0xf0008000,
0xf0009000,
0xf000a000,
};
/* Register base address for each 16550 UART */
static const hwaddr npcm7xx_uart_addr[] = {
0xf0001000,
0xf0002000,
0xf0003000,
0xf0004000,
};
/* Direct memory-mapped access to SPI0 CS0-1. */
static const hwaddr npcm7xx_fiu0_flash_addr[] = {
0x80000000, /* CS0 */
0x88000000, /* CS1 */
};
/* Direct memory-mapped access to SPI3 CS0-3. */
static const hwaddr npcm7xx_fiu3_flash_addr[] = {
0xa0000000, /* CS0 */
0xa8000000, /* CS1 */
0xb0000000, /* CS2 */
0xb8000000, /* CS3 */
};
/* Register base address for each PWM Module */
static const hwaddr npcm7xx_pwm_addr[] = {
0xf0103000,
0xf0104000,
};
static const struct {
hwaddr regs_addr;
uint32_t unconnected_pins;
uint32_t reset_pu;
uint32_t reset_pd;
uint32_t reset_osrc;
uint32_t reset_odsc;
} npcm7xx_gpio[] = {
{
.regs_addr = 0xf0010000,
.reset_pu = 0xff03ffff,
.reset_pd = 0x00fc0000,
}, {
.regs_addr = 0xf0011000,
.unconnected_pins = 0x0000001e,
.reset_pu = 0xfefffe07,
.reset_pd = 0x010001e0,
}, {
.regs_addr = 0xf0012000,
.reset_pu = 0x780fffff,
.reset_pd = 0x07f00000,
.reset_odsc = 0x00700000,
}, {
.regs_addr = 0xf0013000,
.reset_pu = 0x00fc0000,
.reset_pd = 0xff000000,
}, {
.regs_addr = 0xf0014000,
.reset_pu = 0xffffffff,
}, {
.regs_addr = 0xf0015000,
.reset_pu = 0xbf83f801,
.reset_pd = 0x007c0000,
.reset_osrc = 0x000000f1,
.reset_odsc = 0x3f9f80f1,
}, {
.regs_addr = 0xf0016000,
.reset_pu = 0xfc00f801,
.reset_pd = 0x000007fe,
.reset_odsc = 0x00000800,
}, {
.regs_addr = 0xf0017000,
.unconnected_pins = 0xffffff00,
.reset_pu = 0x0000007f,
.reset_osrc = 0x0000007f,
.reset_odsc = 0x0000007f,
},
};
static const struct {
const char *name;
hwaddr regs_addr;
int cs_count;
const hwaddr *flash_addr;
} npcm7xx_fiu[] = {
{
.name = "fiu0",
.regs_addr = 0xfb000000,
.cs_count = ARRAY_SIZE(npcm7xx_fiu0_flash_addr),
.flash_addr = npcm7xx_fiu0_flash_addr,
}, {
.name = "fiu3",
.regs_addr = 0xc0000000,
.cs_count = ARRAY_SIZE(npcm7xx_fiu3_flash_addr),
.flash_addr = npcm7xx_fiu3_flash_addr,
},
};
static void npcm7xx_write_board_setup(ARMCPU *cpu,
const struct arm_boot_info *info)
{
uint32_t board_setup[] = {
0xe59f0010, /* ldr r0, clk_base_addr */
0xe59f1010, /* ldr r1, pllcon1_value */
0xe5801010, /* str r1, [r0, #16] */
0xe59f100c, /* ldr r1, clksel_value */
0xe5801004, /* str r1, [r0, #4] */
0xe12fff1e, /* bx lr */
NPCM7XX_CLK_BA,
NPCM7XX_PLLCON1_FIXUP_VAL,
NPCM7XX_CLKSEL_FIXUP_VAL,
};
int i;
for (i = 0; i < ARRAY_SIZE(board_setup); i++) {
board_setup[i] = tswap32(board_setup[i]);
}
rom_add_blob_fixed("board-setup", board_setup, sizeof(board_setup),
info->board_setup_addr);
}
static void npcm7xx_write_secondary_boot(ARMCPU *cpu,
const struct arm_boot_info *info)
{
/*
* The default smpboot stub halts the secondary CPU with a 'wfi'
* instruction, but the arch/arm/mach-npcm/platsmp.c in the Linux kernel
* does not send an IPI to wake it up, so the second CPU fails to boot. So
* we need to provide our own smpboot stub that can not use 'wfi', it has
* to spin the secondary CPU until the first CPU writes to the SCRPAD reg.
*/
uint32_t smpboot[] = {
0xe59f2018, /* ldr r2, bootreg_addr */
0xe3a00000, /* mov r0, #0 */
0xe5820000, /* str r0, [r2] */
0xe320f002, /* wfe */
0xe5921000, /* ldr r1, [r2] */
0xe1110001, /* tst r1, r1 */
0x0afffffb, /* beq <wfe> */
0xe12fff11, /* bx r1 */
NPCM7XX_SMP_BOOTREG_ADDR,
};
int i;
for (i = 0; i < ARRAY_SIZE(smpboot); i++) {
smpboot[i] = tswap32(smpboot[i]);
}
rom_add_blob_fixed("smpboot", smpboot, sizeof(smpboot),
NPCM7XX_SMP_LOADER_START);
}
static struct arm_boot_info npcm7xx_binfo = {
.loader_start = NPCM7XX_LOADER_START,
.smp_loader_start = NPCM7XX_SMP_LOADER_START,
.smp_bootreg_addr = NPCM7XX_SMP_BOOTREG_ADDR,
.gic_cpu_if_addr = NPCM7XX_GIC_CPU_IF_ADDR,
.write_secondary_boot = npcm7xx_write_secondary_boot,
.board_id = -1,
.board_setup_addr = NPCM7XX_BOARD_SETUP_ADDR,
.write_board_setup = npcm7xx_write_board_setup,
};
void npcm7xx_load_kernel(MachineState *machine, NPCM7xxState *soc)
{
NPCM7xxClass *sc = NPCM7XX_GET_CLASS(soc);
npcm7xx_binfo.ram_size = machine->ram_size;
npcm7xx_binfo.nb_cpus = sc->num_cpus;
arm_load_kernel(&soc->cpu[0], machine, &npcm7xx_binfo);
}
static void npcm7xx_init_fuses(NPCM7xxState *s)
{
NPCM7xxClass *nc = NPCM7XX_GET_CLASS(s);
uint32_t value;
/*
* The initial mask of disabled modules indicates the chip derivative (e.g.
* NPCM750 or NPCM730).
*/
value = tswap32(nc->disabled_modules);
npcm7xx_otp_array_write(&s->fuse_array, &value, NPCM7XX_FUSE_DERIVATIVE,
sizeof(value));
}
static void npcm7xx_write_adc_calibration(NPCM7xxState *s)
{
/* Both ADC and the fuse array must have realized. */
QEMU_BUILD_BUG_ON(sizeof(s->adc.calibration_r_values) != 4);
npcm7xx_otp_array_write(&s->fuse_array, s->adc.calibration_r_values,
NPCM7XX_FUSE_ADC_CALIB, sizeof(s->adc.calibration_r_values));
}
static qemu_irq npcm7xx_irq(NPCM7xxState *s, int n)
{
return qdev_get_gpio_in(DEVICE(&s->a9mpcore), n);
}
static void npcm7xx_init(Object *obj)
{
NPCM7xxState *s = NPCM7XX(obj);
int i;
for (i = 0; i < NPCM7XX_MAX_NUM_CPUS; i++) {
object_initialize_child(obj, "cpu[*]", &s->cpu[i],
ARM_CPU_TYPE_NAME("cortex-a9"));
}
object_initialize_child(obj, "a9mpcore", &s->a9mpcore, TYPE_A9MPCORE_PRIV);
object_initialize_child(obj, "gcr", &s->gcr, TYPE_NPCM7XX_GCR);
object_property_add_alias(obj, "power-on-straps", OBJECT(&s->gcr),
"power-on-straps");
object_initialize_child(obj, "clk", &s->clk, TYPE_NPCM7XX_CLK);
object_initialize_child(obj, "otp1", &s->key_storage,
TYPE_NPCM7XX_KEY_STORAGE);
object_initialize_child(obj, "otp2", &s->fuse_array,
TYPE_NPCM7XX_FUSE_ARRAY);
object_initialize_child(obj, "mc", &s->mc, TYPE_NPCM7XX_MC);
object_initialize_child(obj, "rng", &s->rng, TYPE_NPCM7XX_RNG);
object_initialize_child(obj, "adc", &s->adc, TYPE_NPCM7XX_ADC);
for (i = 0; i < ARRAY_SIZE(s->tim); i++) {
object_initialize_child(obj, "tim[*]", &s->tim[i], TYPE_NPCM7XX_TIMER);
}
for (i = 0; i < ARRAY_SIZE(s->gpio); i++) {
object_initialize_child(obj, "gpio[*]", &s->gpio[i], TYPE_NPCM7XX_GPIO);
}
object_initialize_child(obj, "ehci", &s->ehci, TYPE_NPCM7XX_EHCI);
object_initialize_child(obj, "ohci", &s->ohci, TYPE_SYSBUS_OHCI);
QEMU_BUILD_BUG_ON(ARRAY_SIZE(npcm7xx_fiu) != ARRAY_SIZE(s->fiu));
for (i = 0; i < ARRAY_SIZE(s->fiu); i++) {
object_initialize_child(obj, npcm7xx_fiu[i].name, &s->fiu[i],
TYPE_NPCM7XX_FIU);
}
for (i = 0; i < ARRAY_SIZE(s->pwm); i++) {
object_initialize_child(obj, "pwm[*]", &s->pwm[i], TYPE_NPCM7XX_PWM);
}
}
static void npcm7xx_realize(DeviceState *dev, Error **errp)
{
NPCM7xxState *s = NPCM7XX(dev);
NPCM7xxClass *nc = NPCM7XX_GET_CLASS(s);
int i;
if (memory_region_size(s->dram) > NPCM7XX_DRAM_SZ) {
error_setg(errp, "%s: NPCM7xx cannot address more than %" PRIu64
" MiB of DRAM", __func__, NPCM7XX_DRAM_SZ / MiB);
return;
}
/* CPUs */
for (i = 0; i < nc->num_cpus; i++) {
object_property_set_int(OBJECT(&s->cpu[i]), "mp-affinity",
arm_cpu_mp_affinity(i, NPCM7XX_MAX_NUM_CPUS),
&error_abort);
object_property_set_int(OBJECT(&s->cpu[i]), "reset-cbar",
NPCM7XX_GIC_CPU_IF_ADDR, &error_abort);
object_property_set_bool(OBJECT(&s->cpu[i]), "reset-hivecs", true,
&error_abort);
/* Disable security extensions. */
object_property_set_bool(OBJECT(&s->cpu[i]), "has_el3", false,
&error_abort);
if (!qdev_realize(DEVICE(&s->cpu[i]), NULL, errp)) {
return;
}
}
/* A9MPCORE peripherals. Can only fail if we pass bad parameters here. */
object_property_set_int(OBJECT(&s->a9mpcore), "num-cpu", nc->num_cpus,
&error_abort);
object_property_set_int(OBJECT(&s->a9mpcore), "num-irq", NPCM7XX_NUM_IRQ,
&error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->a9mpcore), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->a9mpcore), 0, NPCM7XX_CPUP_BA);
for (i = 0; i < nc->num_cpus; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(&s->a9mpcore), i,
qdev_get_gpio_in(DEVICE(&s->cpu[i]), ARM_CPU_IRQ));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->a9mpcore), i + nc->num_cpus,
qdev_get_gpio_in(DEVICE(&s->cpu[i]), ARM_CPU_FIQ));
}
/* L2 cache controller */
sysbus_create_simple("l2x0", NPCM7XX_L2C_BA, NULL);
/* System Global Control Registers (GCR). Can fail due to user input. */
object_property_set_int(OBJECT(&s->gcr), "disabled-modules",
nc->disabled_modules, &error_abort);
object_property_add_const_link(OBJECT(&s->gcr), "dram-mr", OBJECT(s->dram));
if (!sysbus_realize(SYS_BUS_DEVICE(&s->gcr), errp)) {
return;
}
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gcr), 0, NPCM7XX_GCR_BA);
/* Clock Control Registers (CLK). Cannot fail. */
sysbus_realize(SYS_BUS_DEVICE(&s->clk), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->clk), 0, NPCM7XX_CLK_BA);
/* OTP key storage and fuse strap array. Cannot fail. */
sysbus_realize(SYS_BUS_DEVICE(&s->key_storage), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->key_storage), 0, NPCM7XX_OTP1_BA);
sysbus_realize(SYS_BUS_DEVICE(&s->fuse_array), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->fuse_array), 0, NPCM7XX_OTP2_BA);
npcm7xx_init_fuses(s);
/* Fake Memory Controller (MC). Cannot fail. */
sysbus_realize(SYS_BUS_DEVICE(&s->mc), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->mc), 0, NPCM7XX_MC_BA);
/* ADC Modules. Cannot fail. */
qdev_connect_clock_in(DEVICE(&s->adc), "clock", qdev_get_clock_out(
DEVICE(&s->clk), "adc-clock"));
sysbus_realize(SYS_BUS_DEVICE(&s->adc), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->adc), 0, NPCM7XX_ADC_BA);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->adc), 0,
npcm7xx_irq(s, NPCM7XX_ADC_IRQ));
npcm7xx_write_adc_calibration(s);
/* Timer Modules (TIM). Cannot fail. */
QEMU_BUILD_BUG_ON(ARRAY_SIZE(npcm7xx_tim_addr) != ARRAY_SIZE(s->tim));
for (i = 0; i < ARRAY_SIZE(s->tim); i++) {
SysBusDevice *sbd = SYS_BUS_DEVICE(&s->tim[i]);
int first_irq;
int j;
/* Connect the timer clock. */
qdev_connect_clock_in(DEVICE(&s->tim[i]), "clock", qdev_get_clock_out(
DEVICE(&s->clk), "timer-clock"));
sysbus_realize(sbd, &error_abort);
sysbus_mmio_map(sbd, 0, npcm7xx_tim_addr[i]);
first_irq = NPCM7XX_TIMER0_IRQ + i * NPCM7XX_TIMERS_PER_CTRL;
for (j = 0; j < NPCM7XX_TIMERS_PER_CTRL; j++) {
qemu_irq irq = npcm7xx_irq(s, first_irq + j);
sysbus_connect_irq(sbd, j, irq);
}
/* IRQ for watchdogs */
sysbus_connect_irq(sbd, NPCM7XX_TIMERS_PER_CTRL,
npcm7xx_irq(s, NPCM7XX_WDG0_IRQ + i));
/* GPIO that connects clk module with watchdog */
qdev_connect_gpio_out_named(DEVICE(&s->tim[i]),
NPCM7XX_WATCHDOG_RESET_GPIO_OUT, 0,
qdev_get_gpio_in_named(DEVICE(&s->clk),
NPCM7XX_WATCHDOG_RESET_GPIO_IN, i));
}
/* UART0..3 (16550 compatible) */
for (i = 0; i < ARRAY_SIZE(npcm7xx_uart_addr); i++) {
serial_mm_init(get_system_memory(), npcm7xx_uart_addr[i], 2,
npcm7xx_irq(s, NPCM7XX_UART0_IRQ + i), 115200,
serial_hd(i), DEVICE_LITTLE_ENDIAN);
}
/* Random Number Generator. Cannot fail. */
sysbus_realize(SYS_BUS_DEVICE(&s->rng), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->rng), 0, NPCM7XX_RNG_BA);
/* GPIO modules. Cannot fail. */
QEMU_BUILD_BUG_ON(ARRAY_SIZE(npcm7xx_gpio) != ARRAY_SIZE(s->gpio));
for (i = 0; i < ARRAY_SIZE(s->gpio); i++) {
Object *obj = OBJECT(&s->gpio[i]);
object_property_set_uint(obj, "reset-pullup",
npcm7xx_gpio[i].reset_pu, &error_abort);
object_property_set_uint(obj, "reset-pulldown",
npcm7xx_gpio[i].reset_pd, &error_abort);
object_property_set_uint(obj, "reset-osrc",
npcm7xx_gpio[i].reset_osrc, &error_abort);
object_property_set_uint(obj, "reset-odsc",
npcm7xx_gpio[i].reset_odsc, &error_abort);
sysbus_realize(SYS_BUS_DEVICE(obj), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(obj), 0, npcm7xx_gpio[i].regs_addr);
sysbus_connect_irq(SYS_BUS_DEVICE(obj), 0,
npcm7xx_irq(s, NPCM7XX_GPIO0_IRQ + i));
}
/* USB Host */
object_property_set_bool(OBJECT(&s->ehci), "companion-enable", true,
&error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->ehci), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ehci), 0, NPCM7XX_EHCI_BA);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->ehci), 0,
npcm7xx_irq(s, NPCM7XX_EHCI_IRQ));
object_property_set_str(OBJECT(&s->ohci), "masterbus", "usb-bus.0",
&error_abort);
object_property_set_uint(OBJECT(&s->ohci), "num-ports", 1, &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->ohci), &error_abort);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ohci), 0, NPCM7XX_OHCI_BA);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->ohci), 0,
npcm7xx_irq(s, NPCM7XX_OHCI_IRQ));
/* PWM Modules. Cannot fail. */
QEMU_BUILD_BUG_ON(ARRAY_SIZE(npcm7xx_pwm_addr) != ARRAY_SIZE(s->pwm));
for (i = 0; i < ARRAY_SIZE(s->pwm); i++) {
SysBusDevice *sbd = SYS_BUS_DEVICE(&s->pwm[i]);
qdev_connect_clock_in(DEVICE(&s->pwm[i]), "clock", qdev_get_clock_out(
DEVICE(&s->clk), "apb3-clock"));
sysbus_realize(sbd, &error_abort);
sysbus_mmio_map(sbd, 0, npcm7xx_pwm_addr[i]);
sysbus_connect_irq(sbd, i, npcm7xx_irq(s, NPCM7XX_PWM0_IRQ + i));
}
/*
* Flash Interface Unit (FIU). Can fail if incorrect number of chip selects
* specified, but this is a programming error.
*/
QEMU_BUILD_BUG_ON(ARRAY_SIZE(npcm7xx_fiu) != ARRAY_SIZE(s->fiu));
for (i = 0; i < ARRAY_SIZE(s->fiu); i++) {
SysBusDevice *sbd = SYS_BUS_DEVICE(&s->fiu[i]);
int j;
object_property_set_int(OBJECT(sbd), "cs-count",
npcm7xx_fiu[i].cs_count, &error_abort);
sysbus_realize(sbd, &error_abort);
sysbus_mmio_map(sbd, 0, npcm7xx_fiu[i].regs_addr);
for (j = 0; j < npcm7xx_fiu[i].cs_count; j++) {
sysbus_mmio_map(sbd, j + 1, npcm7xx_fiu[i].flash_addr[j]);
}
}
/* RAM2 (SRAM) */
memory_region_init_ram(&s->sram, OBJECT(dev), "ram2",
NPCM7XX_RAM2_SZ, &error_abort);
memory_region_add_subregion(get_system_memory(), NPCM7XX_RAM2_BA, &s->sram);
/* RAM3 (SRAM) */
memory_region_init_ram(&s->ram3, OBJECT(dev), "ram3",
NPCM7XX_RAM3_SZ, &error_abort);
memory_region_add_subregion(get_system_memory(), NPCM7XX_RAM3_BA, &s->ram3);
/* Internal ROM */
memory_region_init_rom(&s->irom, OBJECT(dev), "irom", NPCM7XX_ROM_SZ,
&error_abort);
memory_region_add_subregion(get_system_memory(), NPCM7XX_ROM_BA, &s->irom);
create_unimplemented_device("npcm7xx.shm", 0xc0001000, 4 * KiB);
create_unimplemented_device("npcm7xx.vdmx", 0xe0800000, 4 * KiB);
create_unimplemented_device("npcm7xx.pcierc", 0xe1000000, 64 * KiB);
create_unimplemented_device("npcm7xx.kcs", 0xf0007000, 4 * KiB);
create_unimplemented_device("npcm7xx.gfxi", 0xf000e000, 4 * KiB);
create_unimplemented_device("npcm7xx.gpio[0]", 0xf0010000, 4 * KiB);
create_unimplemented_device("npcm7xx.gpio[1]", 0xf0011000, 4 * KiB);
create_unimplemented_device("npcm7xx.gpio[2]", 0xf0012000, 4 * KiB);
create_unimplemented_device("npcm7xx.gpio[3]", 0xf0013000, 4 * KiB);
create_unimplemented_device("npcm7xx.gpio[4]", 0xf0014000, 4 * KiB);
create_unimplemented_device("npcm7xx.gpio[5]", 0xf0015000, 4 * KiB);
create_unimplemented_device("npcm7xx.gpio[6]", 0xf0016000, 4 * KiB);
create_unimplemented_device("npcm7xx.gpio[7]", 0xf0017000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[0]", 0xf0080000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[1]", 0xf0081000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[2]", 0xf0082000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[3]", 0xf0083000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[4]", 0xf0084000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[5]", 0xf0085000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[6]", 0xf0086000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[7]", 0xf0087000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[8]", 0xf0088000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[9]", 0xf0089000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[10]", 0xf008a000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[11]", 0xf008b000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[12]", 0xf008c000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[13]", 0xf008d000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[14]", 0xf008e000, 4 * KiB);
create_unimplemented_device("npcm7xx.smbus[15]", 0xf008f000, 4 * KiB);
create_unimplemented_device("npcm7xx.espi", 0xf009f000, 4 * KiB);
create_unimplemented_device("npcm7xx.peci", 0xf0100000, 4 * KiB);
create_unimplemented_device("npcm7xx.siox[1]", 0xf0101000, 4 * KiB);
create_unimplemented_device("npcm7xx.siox[2]", 0xf0102000, 4 * KiB);
create_unimplemented_device("npcm7xx.mft[0]", 0xf0180000, 4 * KiB);
create_unimplemented_device("npcm7xx.mft[1]", 0xf0181000, 4 * KiB);
create_unimplemented_device("npcm7xx.mft[2]", 0xf0182000, 4 * KiB);
create_unimplemented_device("npcm7xx.mft[3]", 0xf0183000, 4 * KiB);
create_unimplemented_device("npcm7xx.mft[4]", 0xf0184000, 4 * KiB);
create_unimplemented_device("npcm7xx.mft[5]", 0xf0185000, 4 * KiB);
create_unimplemented_device("npcm7xx.mft[6]", 0xf0186000, 4 * KiB);
create_unimplemented_device("npcm7xx.mft[7]", 0xf0187000, 4 * KiB);
create_unimplemented_device("npcm7xx.pspi1", 0xf0200000, 4 * KiB);
create_unimplemented_device("npcm7xx.pspi2", 0xf0201000, 4 * KiB);
create_unimplemented_device("npcm7xx.ahbpci", 0xf0400000, 1 * MiB);
create_unimplemented_device("npcm7xx.mcphy", 0xf05f0000, 64 * KiB);
create_unimplemented_device("npcm7xx.gmac1", 0xf0802000, 8 * KiB);
create_unimplemented_device("npcm7xx.gmac2", 0xf0804000, 8 * KiB);
create_unimplemented_device("npcm7xx.vcd", 0xf0810000, 64 * KiB);
create_unimplemented_device("npcm7xx.ece", 0xf0820000, 8 * KiB);
create_unimplemented_device("npcm7xx.vdma", 0xf0822000, 8 * KiB);
create_unimplemented_device("npcm7xx.emc1", 0xf0825000, 4 * KiB);
create_unimplemented_device("npcm7xx.emc2", 0xf0826000, 4 * KiB);
create_unimplemented_device("npcm7xx.usbd[0]", 0xf0830000, 4 * KiB);
create_unimplemented_device("npcm7xx.usbd[1]", 0xf0831000, 4 * KiB);
create_unimplemented_device("npcm7xx.usbd[2]", 0xf0832000, 4 * KiB);
create_unimplemented_device("npcm7xx.usbd[3]", 0xf0833000, 4 * KiB);
create_unimplemented_device("npcm7xx.usbd[4]", 0xf0834000, 4 * KiB);
create_unimplemented_device("npcm7xx.usbd[5]", 0xf0835000, 4 * KiB);
create_unimplemented_device("npcm7xx.usbd[6]", 0xf0836000, 4 * KiB);
create_unimplemented_device("npcm7xx.usbd[7]", 0xf0837000, 4 * KiB);
create_unimplemented_device("npcm7xx.usbd[8]", 0xf0838000, 4 * KiB);
create_unimplemented_device("npcm7xx.usbd[9]", 0xf0839000, 4 * KiB);
create_unimplemented_device("npcm7xx.sd", 0xf0840000, 8 * KiB);
create_unimplemented_device("npcm7xx.mmc", 0xf0842000, 8 * KiB);
create_unimplemented_device("npcm7xx.pcimbx", 0xf0848000, 512 * KiB);
create_unimplemented_device("npcm7xx.aes", 0xf0858000, 4 * KiB);
create_unimplemented_device("npcm7xx.des", 0xf0859000, 4 * KiB);
create_unimplemented_device("npcm7xx.sha", 0xf085a000, 4 * KiB);
create_unimplemented_device("npcm7xx.secacc", 0xf085b000, 4 * KiB);
create_unimplemented_device("npcm7xx.spixcs0", 0xf8000000, 16 * MiB);
create_unimplemented_device("npcm7xx.spixcs1", 0xf9000000, 16 * MiB);
create_unimplemented_device("npcm7xx.spix", 0xfb001000, 4 * KiB);
}
static Property npcm7xx_properties[] = {
DEFINE_PROP_LINK("dram-mr", NPCM7xxState, dram, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_END_OF_LIST(),
};
static void npcm7xx_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = npcm7xx_realize;
dc->user_creatable = false;
device_class_set_props(dc, npcm7xx_properties);
}
static void npcm730_class_init(ObjectClass *oc, void *data)
{
NPCM7xxClass *nc = NPCM7XX_CLASS(oc);
/* NPCM730 is optimized for data center use, so no graphics, etc. */
nc->disabled_modules = 0x00300395;
nc->num_cpus = 2;
}
static void npcm750_class_init(ObjectClass *oc, void *data)
{
NPCM7xxClass *nc = NPCM7XX_CLASS(oc);
/* NPCM750 has 2 cores and a full set of peripherals */
nc->disabled_modules = 0x00000000;
nc->num_cpus = 2;
}
static const TypeInfo npcm7xx_soc_types[] = {
{
.name = TYPE_NPCM7XX,
.parent = TYPE_DEVICE,
.instance_size = sizeof(NPCM7xxState),
.instance_init = npcm7xx_init,
.class_size = sizeof(NPCM7xxClass),
.class_init = npcm7xx_class_init,
.abstract = true,
}, {
.name = TYPE_NPCM730,
.parent = TYPE_NPCM7XX,
.class_init = npcm730_class_init,
}, {
.name = TYPE_NPCM750,
.parent = TYPE_NPCM7XX,
.class_init = npcm750_class_init,
},
};
DEFINE_TYPES(npcm7xx_soc_types);