qemu-patch-raspberry4/hw/acpi/cpu.c
Igor Mammedov 9cc5a90b0e x68: acpi: trigger SMI before sending hotplug Notify event to OSPM
In case firmware has negotiated CPU hotplug SMI feature, generate
AML to describe SMI IO port region and send SMI to firmware
on each CPU hotplug SCI in case new CPUs were hotplugged.

Since new CPUs can be hotplugged while CPU_SCAN_METHOD is running
we can't send SMI before new CPUs are fetched from QEMU as it
could cause sending Notify to a CPU that firmware hasn't seen yet.
So fetch new CPUs into local cache first, then send SMI and
after that send Notify events to cached CPUs. This should ensure
that Notify is sent only to CPUs which were processed by firmware
first.
Any CPUs that were hotplugged after caching will be processed
by the next CPU_SCAN_METHOD, when pending SCI is handled.

Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20200923094650.1301166-10-imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-09-29 02:15:24 -04:00

709 lines
26 KiB
C

#include "qemu/osdep.h"
#include "hw/boards.h"
#include "migration/vmstate.h"
#include "hw/acpi/cpu.h"
#include "qapi/error.h"
#include "qapi/qapi-events-misc.h"
#include "trace.h"
#include "sysemu/numa.h"
#define ACPI_CPU_HOTPLUG_REG_LEN 12
#define ACPI_CPU_SELECTOR_OFFSET_WR 0
#define ACPI_CPU_FLAGS_OFFSET_RW 4
#define ACPI_CPU_CMD_OFFSET_WR 5
#define ACPI_CPU_CMD_DATA_OFFSET_RW 8
#define ACPI_CPU_CMD_DATA2_OFFSET_R 0
#define OVMF_CPUHP_SMI_CMD 4
enum {
CPHP_GET_NEXT_CPU_WITH_EVENT_CMD = 0,
CPHP_OST_EVENT_CMD = 1,
CPHP_OST_STATUS_CMD = 2,
CPHP_GET_CPU_ID_CMD = 3,
CPHP_CMD_MAX
};
static ACPIOSTInfo *acpi_cpu_device_status(int idx, AcpiCpuStatus *cdev)
{
ACPIOSTInfo *info = g_new0(ACPIOSTInfo, 1);
info->slot_type = ACPI_SLOT_TYPE_CPU;
info->slot = g_strdup_printf("%d", idx);
info->source = cdev->ost_event;
info->status = cdev->ost_status;
if (cdev->cpu) {
DeviceState *dev = DEVICE(cdev->cpu);
if (dev->id) {
info->device = g_strdup(dev->id);
info->has_device = true;
}
}
return info;
}
void acpi_cpu_ospm_status(CPUHotplugState *cpu_st, ACPIOSTInfoList ***list)
{
int i;
for (i = 0; i < cpu_st->dev_count; i++) {
ACPIOSTInfoList *elem = g_new0(ACPIOSTInfoList, 1);
elem->value = acpi_cpu_device_status(i, &cpu_st->devs[i]);
elem->next = NULL;
**list = elem;
*list = &elem->next;
}
}
static uint64_t cpu_hotplug_rd(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val = 0;
CPUHotplugState *cpu_st = opaque;
AcpiCpuStatus *cdev;
if (cpu_st->selector >= cpu_st->dev_count) {
return val;
}
cdev = &cpu_st->devs[cpu_st->selector];
switch (addr) {
case ACPI_CPU_FLAGS_OFFSET_RW: /* pack and return is_* fields */
val |= cdev->cpu ? 1 : 0;
val |= cdev->is_inserting ? 2 : 0;
val |= cdev->is_removing ? 4 : 0;
trace_cpuhp_acpi_read_flags(cpu_st->selector, val);
break;
case ACPI_CPU_CMD_DATA_OFFSET_RW:
switch (cpu_st->command) {
case CPHP_GET_NEXT_CPU_WITH_EVENT_CMD:
val = cpu_st->selector;
break;
case CPHP_GET_CPU_ID_CMD:
val = cdev->arch_id & 0xFFFFFFFF;
break;
default:
break;
}
trace_cpuhp_acpi_read_cmd_data(cpu_st->selector, val);
break;
case ACPI_CPU_CMD_DATA2_OFFSET_R:
switch (cpu_st->command) {
case CPHP_GET_NEXT_CPU_WITH_EVENT_CMD:
val = 0;
break;
case CPHP_GET_CPU_ID_CMD:
val = cdev->arch_id >> 32;
break;
default:
break;
}
trace_cpuhp_acpi_read_cmd_data2(cpu_st->selector, val);
break;
default:
break;
}
return val;
}
static void cpu_hotplug_wr(void *opaque, hwaddr addr, uint64_t data,
unsigned int size)
{
CPUHotplugState *cpu_st = opaque;
AcpiCpuStatus *cdev;
ACPIOSTInfo *info;
assert(cpu_st->dev_count);
if (addr) {
if (cpu_st->selector >= cpu_st->dev_count) {
trace_cpuhp_acpi_invalid_idx_selected(cpu_st->selector);
return;
}
}
switch (addr) {
case ACPI_CPU_SELECTOR_OFFSET_WR: /* current CPU selector */
cpu_st->selector = data;
trace_cpuhp_acpi_write_idx(cpu_st->selector);
break;
case ACPI_CPU_FLAGS_OFFSET_RW: /* set is_* fields */
cdev = &cpu_st->devs[cpu_st->selector];
if (data & 2) { /* clear insert event */
cdev->is_inserting = false;
trace_cpuhp_acpi_clear_inserting_evt(cpu_st->selector);
} else if (data & 4) { /* clear remove event */
cdev->is_removing = false;
trace_cpuhp_acpi_clear_remove_evt(cpu_st->selector);
} else if (data & 8) {
DeviceState *dev = NULL;
HotplugHandler *hotplug_ctrl = NULL;
if (!cdev->cpu || cdev->cpu == first_cpu) {
trace_cpuhp_acpi_ejecting_invalid_cpu(cpu_st->selector);
break;
}
trace_cpuhp_acpi_ejecting_cpu(cpu_st->selector);
dev = DEVICE(cdev->cpu);
hotplug_ctrl = qdev_get_hotplug_handler(dev);
hotplug_handler_unplug(hotplug_ctrl, dev, NULL);
object_unparent(OBJECT(dev));
}
break;
case ACPI_CPU_CMD_OFFSET_WR:
trace_cpuhp_acpi_write_cmd(cpu_st->selector, data);
if (data < CPHP_CMD_MAX) {
cpu_st->command = data;
if (cpu_st->command == CPHP_GET_NEXT_CPU_WITH_EVENT_CMD) {
uint32_t iter = cpu_st->selector;
do {
cdev = &cpu_st->devs[iter];
if (cdev->is_inserting || cdev->is_removing) {
cpu_st->selector = iter;
trace_cpuhp_acpi_cpu_has_events(cpu_st->selector,
cdev->is_inserting, cdev->is_removing);
break;
}
iter = iter + 1 < cpu_st->dev_count ? iter + 1 : 0;
} while (iter != cpu_st->selector);
}
}
break;
case ACPI_CPU_CMD_DATA_OFFSET_RW:
switch (cpu_st->command) {
case CPHP_OST_EVENT_CMD: {
cdev = &cpu_st->devs[cpu_st->selector];
cdev->ost_event = data;
trace_cpuhp_acpi_write_ost_ev(cpu_st->selector, cdev->ost_event);
break;
}
case CPHP_OST_STATUS_CMD: {
cdev = &cpu_st->devs[cpu_st->selector];
cdev->ost_status = data;
info = acpi_cpu_device_status(cpu_st->selector, cdev);
qapi_event_send_acpi_device_ost(info);
qapi_free_ACPIOSTInfo(info);
trace_cpuhp_acpi_write_ost_status(cpu_st->selector,
cdev->ost_status);
break;
}
default:
break;
}
break;
default:
break;
}
}
static const MemoryRegionOps cpu_hotplug_ops = {
.read = cpu_hotplug_rd,
.write = cpu_hotplug_wr,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4,
},
};
void cpu_hotplug_hw_init(MemoryRegion *as, Object *owner,
CPUHotplugState *state, hwaddr base_addr)
{
MachineState *machine = MACHINE(qdev_get_machine());
MachineClass *mc = MACHINE_GET_CLASS(machine);
const CPUArchIdList *id_list;
int i;
assert(mc->possible_cpu_arch_ids);
id_list = mc->possible_cpu_arch_ids(machine);
state->dev_count = id_list->len;
state->devs = g_new0(typeof(*state->devs), state->dev_count);
for (i = 0; i < id_list->len; i++) {
state->devs[i].cpu = CPU(id_list->cpus[i].cpu);
state->devs[i].arch_id = id_list->cpus[i].arch_id;
}
memory_region_init_io(&state->ctrl_reg, owner, &cpu_hotplug_ops, state,
"acpi-cpu-hotplug", ACPI_CPU_HOTPLUG_REG_LEN);
memory_region_add_subregion(as, base_addr, &state->ctrl_reg);
}
static AcpiCpuStatus *get_cpu_status(CPUHotplugState *cpu_st, DeviceState *dev)
{
CPUClass *k = CPU_GET_CLASS(dev);
uint64_t cpu_arch_id = k->get_arch_id(CPU(dev));
int i;
for (i = 0; i < cpu_st->dev_count; i++) {
if (cpu_arch_id == cpu_st->devs[i].arch_id) {
return &cpu_st->devs[i];
}
}
return NULL;
}
void acpi_cpu_plug_cb(HotplugHandler *hotplug_dev,
CPUHotplugState *cpu_st, DeviceState *dev, Error **errp)
{
AcpiCpuStatus *cdev;
cdev = get_cpu_status(cpu_st, dev);
if (!cdev) {
return;
}
cdev->cpu = CPU(dev);
if (dev->hotplugged) {
cdev->is_inserting = true;
acpi_send_event(DEVICE(hotplug_dev), ACPI_CPU_HOTPLUG_STATUS);
}
}
void acpi_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
CPUHotplugState *cpu_st,
DeviceState *dev, Error **errp)
{
AcpiCpuStatus *cdev;
cdev = get_cpu_status(cpu_st, dev);
if (!cdev) {
return;
}
cdev->is_removing = true;
acpi_send_event(DEVICE(hotplug_dev), ACPI_CPU_HOTPLUG_STATUS);
}
void acpi_cpu_unplug_cb(CPUHotplugState *cpu_st,
DeviceState *dev, Error **errp)
{
AcpiCpuStatus *cdev;
cdev = get_cpu_status(cpu_st, dev);
if (!cdev) {
return;
}
cdev->cpu = NULL;
}
static const VMStateDescription vmstate_cpuhp_sts = {
.name = "CPU hotplug device state",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_BOOL(is_inserting, AcpiCpuStatus),
VMSTATE_BOOL(is_removing, AcpiCpuStatus),
VMSTATE_UINT32(ost_event, AcpiCpuStatus),
VMSTATE_UINT32(ost_status, AcpiCpuStatus),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_cpu_hotplug = {
.name = "CPU hotplug state",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(selector, CPUHotplugState),
VMSTATE_UINT8(command, CPUHotplugState),
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(devs, CPUHotplugState, dev_count,
vmstate_cpuhp_sts, AcpiCpuStatus),
VMSTATE_END_OF_LIST()
}
};
#define CPU_NAME_FMT "C%.03X"
#define CPUHP_RES_DEVICE "PRES"
#define CPU_LOCK "CPLK"
#define CPU_STS_METHOD "CSTA"
#define CPU_SCAN_METHOD "CSCN"
#define CPU_NOTIFY_METHOD "CTFY"
#define CPU_EJECT_METHOD "CEJ0"
#define CPU_OST_METHOD "COST"
#define CPU_ADDED_LIST "CNEW"
#define CPU_ENABLED "CPEN"
#define CPU_SELECTOR "CSEL"
#define CPU_COMMAND "CCMD"
#define CPU_DATA "CDAT"
#define CPU_INSERT_EVENT "CINS"
#define CPU_REMOVE_EVENT "CRMV"
#define CPU_EJECT_EVENT "CEJ0"
void build_cpus_aml(Aml *table, MachineState *machine, CPUHotplugFeatures opts,
hwaddr io_base,
const char *res_root,
const char *event_handler_method)
{
Aml *ifctx;
Aml *field;
Aml *method;
Aml *cpu_ctrl_dev;
Aml *cpus_dev;
Aml *zero = aml_int(0);
Aml *one = aml_int(1);
Aml *sb_scope = aml_scope("_SB");
MachineClass *mc = MACHINE_GET_CLASS(machine);
const CPUArchIdList *arch_ids = mc->possible_cpu_arch_ids(machine);
char *cphp_res_path = g_strdup_printf("%s." CPUHP_RES_DEVICE, res_root);
Object *obj = object_resolve_path_type("", TYPE_ACPI_DEVICE_IF, NULL);
AcpiDeviceIfClass *adevc = ACPI_DEVICE_IF_GET_CLASS(obj);
AcpiDeviceIf *adev = ACPI_DEVICE_IF(obj);
cpu_ctrl_dev = aml_device("%s", cphp_res_path);
{
Aml *crs;
aml_append(cpu_ctrl_dev,
aml_name_decl("_HID", aml_eisaid("PNP0A06")));
aml_append(cpu_ctrl_dev,
aml_name_decl("_UID", aml_string("CPU Hotplug resources")));
aml_append(cpu_ctrl_dev, aml_mutex(CPU_LOCK, 0));
crs = aml_resource_template();
aml_append(crs, aml_io(AML_DECODE16, io_base, io_base, 1,
ACPI_CPU_HOTPLUG_REG_LEN));
aml_append(cpu_ctrl_dev, aml_name_decl("_CRS", crs));
/* declare CPU hotplug MMIO region with related access fields */
aml_append(cpu_ctrl_dev,
aml_operation_region("PRST", AML_SYSTEM_IO, aml_int(io_base),
ACPI_CPU_HOTPLUG_REG_LEN));
field = aml_field("PRST", AML_BYTE_ACC, AML_NOLOCK,
AML_WRITE_AS_ZEROS);
aml_append(field, aml_reserved_field(ACPI_CPU_FLAGS_OFFSET_RW * 8));
/* 1 if enabled, read only */
aml_append(field, aml_named_field(CPU_ENABLED, 1));
/* (read) 1 if has a insert event. (write) 1 to clear event */
aml_append(field, aml_named_field(CPU_INSERT_EVENT, 1));
/* (read) 1 if has a remove event. (write) 1 to clear event */
aml_append(field, aml_named_field(CPU_REMOVE_EVENT, 1));
/* initiates device eject, write only */
aml_append(field, aml_named_field(CPU_EJECT_EVENT, 1));
aml_append(field, aml_reserved_field(4));
aml_append(field, aml_named_field(CPU_COMMAND, 8));
aml_append(cpu_ctrl_dev, field);
field = aml_field("PRST", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
/* CPU selector, write only */
aml_append(field, aml_named_field(CPU_SELECTOR, 32));
/* flags + cmd + 2byte align */
aml_append(field, aml_reserved_field(4 * 8));
aml_append(field, aml_named_field(CPU_DATA, 32));
aml_append(cpu_ctrl_dev, field);
if (opts.has_legacy_cphp) {
method = aml_method("_INI", 0, AML_SERIALIZED);
/* switch off legacy CPU hotplug HW and use new one,
* on reboot system is in new mode and writing 0
* in CPU_SELECTOR selects BSP, which is NOP at
* the time _INI is called */
aml_append(method, aml_store(zero, aml_name(CPU_SELECTOR)));
aml_append(cpu_ctrl_dev, method);
}
}
aml_append(sb_scope, cpu_ctrl_dev);
cpus_dev = aml_device("\\_SB.CPUS");
{
int i;
Aml *ctrl_lock = aml_name("%s.%s", cphp_res_path, CPU_LOCK);
Aml *cpu_selector = aml_name("%s.%s", cphp_res_path, CPU_SELECTOR);
Aml *is_enabled = aml_name("%s.%s", cphp_res_path, CPU_ENABLED);
Aml *cpu_cmd = aml_name("%s.%s", cphp_res_path, CPU_COMMAND);
Aml *cpu_data = aml_name("%s.%s", cphp_res_path, CPU_DATA);
Aml *ins_evt = aml_name("%s.%s", cphp_res_path, CPU_INSERT_EVENT);
Aml *rm_evt = aml_name("%s.%s", cphp_res_path, CPU_REMOVE_EVENT);
Aml *ej_evt = aml_name("%s.%s", cphp_res_path, CPU_EJECT_EVENT);
aml_append(cpus_dev, aml_name_decl("_HID", aml_string("ACPI0010")));
aml_append(cpus_dev, aml_name_decl("_CID", aml_eisaid("PNP0A05")));
method = aml_method(CPU_NOTIFY_METHOD, 2, AML_NOTSERIALIZED);
for (i = 0; i < arch_ids->len; i++) {
Aml *cpu = aml_name(CPU_NAME_FMT, i);
Aml *uid = aml_arg(0);
Aml *event = aml_arg(1);
ifctx = aml_if(aml_equal(uid, aml_int(i)));
{
aml_append(ifctx, aml_notify(cpu, event));
}
aml_append(method, ifctx);
}
aml_append(cpus_dev, method);
method = aml_method(CPU_STS_METHOD, 1, AML_SERIALIZED);
{
Aml *idx = aml_arg(0);
Aml *sta = aml_local(0);
aml_append(method, aml_acquire(ctrl_lock, 0xFFFF));
aml_append(method, aml_store(idx, cpu_selector));
aml_append(method, aml_store(zero, sta));
ifctx = aml_if(aml_equal(is_enabled, one));
{
aml_append(ifctx, aml_store(aml_int(0xF), sta));
}
aml_append(method, ifctx);
aml_append(method, aml_release(ctrl_lock));
aml_append(method, aml_return(sta));
}
aml_append(cpus_dev, method);
method = aml_method(CPU_EJECT_METHOD, 1, AML_SERIALIZED);
{
Aml *idx = aml_arg(0);
aml_append(method, aml_acquire(ctrl_lock, 0xFFFF));
aml_append(method, aml_store(idx, cpu_selector));
aml_append(method, aml_store(one, ej_evt));
aml_append(method, aml_release(ctrl_lock));
}
aml_append(cpus_dev, method);
method = aml_method(CPU_SCAN_METHOD, 0, AML_SERIALIZED);
{
const uint8_t max_cpus_per_pass = 255;
Aml *else_ctx;
Aml *while_ctx, *while_ctx2;
Aml *has_event = aml_local(0);
Aml *dev_chk = aml_int(1);
Aml *eject_req = aml_int(3);
Aml *next_cpu_cmd = aml_int(CPHP_GET_NEXT_CPU_WITH_EVENT_CMD);
Aml *num_added_cpus = aml_local(1);
Aml *cpu_idx = aml_local(2);
Aml *uid = aml_local(3);
Aml *has_job = aml_local(4);
Aml *new_cpus = aml_name(CPU_ADDED_LIST);
aml_append(method, aml_acquire(ctrl_lock, 0xFFFF));
/*
* Windows versions newer than XP (including Windows 10/Windows
* Server 2019), do support* VarPackageOp but, it is cripled to hold
* the same elements number as old PackageOp.
* For compatibility with Windows XP (so it won't crash) use ACPI1.0
* PackageOp which can hold max 255 elements.
*
* use named package as old Windows don't support it in local var
*/
aml_append(method, aml_name_decl(CPU_ADDED_LIST,
aml_package(max_cpus_per_pass)));
aml_append(method, aml_store(zero, uid));
aml_append(method, aml_store(one, has_job));
/*
* CPU_ADDED_LIST can hold limited number of elements, outer loop
* allows to process CPUs in batches which let us to handle more
* CPUs than CPU_ADDED_LIST can hold.
*/
while_ctx2 = aml_while(aml_equal(has_job, one));
{
aml_append(while_ctx2, aml_store(zero, has_job));
aml_append(while_ctx2, aml_store(one, has_event));
aml_append(while_ctx2, aml_store(zero, num_added_cpus));
/*
* Scan CPUs, till there are CPUs with events or
* CPU_ADDED_LIST capacity is exhausted
*/
while_ctx = aml_while(aml_land(aml_equal(has_event, one),
aml_lless(uid, aml_int(arch_ids->len))));
{
/*
* clear loop exit condition, ins_evt/rm_evt checks will
* set it to 1 while next_cpu_cmd returns a CPU with events
*/
aml_append(while_ctx, aml_store(zero, has_event));
aml_append(while_ctx, aml_store(uid, cpu_selector));
aml_append(while_ctx, aml_store(next_cpu_cmd, cpu_cmd));
/*
* wrap around case, scan is complete, exit loop.
* It happens since events are not cleared in scan loop,
* so next_cpu_cmd continues to find already processed CPUs
*/
ifctx = aml_if(aml_lless(cpu_data, uid));
{
aml_append(ifctx, aml_break());
}
aml_append(while_ctx, ifctx);
/*
* if CPU_ADDED_LIST is full, exit inner loop and process
* collected CPUs
*/
ifctx = aml_if(
aml_equal(num_added_cpus, aml_int(max_cpus_per_pass)));
{
aml_append(ifctx, aml_store(one, has_job));
aml_append(ifctx, aml_break());
}
aml_append(while_ctx, ifctx);
aml_append(while_ctx, aml_store(cpu_data, uid));
ifctx = aml_if(aml_equal(ins_evt, one));
{
/* cache added CPUs to Notify/Wakeup later */
aml_append(ifctx, aml_store(uid,
aml_index(new_cpus, num_added_cpus)));
aml_append(ifctx, aml_increment(num_added_cpus));
aml_append(ifctx, aml_store(one, has_event));
}
aml_append(while_ctx, ifctx);
else_ctx = aml_else();
ifctx = aml_if(aml_equal(rm_evt, one));
{
aml_append(ifctx,
aml_call2(CPU_NOTIFY_METHOD, uid, eject_req));
aml_append(ifctx, aml_store(one, rm_evt));
aml_append(ifctx, aml_store(one, has_event));
}
aml_append(else_ctx, ifctx);
aml_append(while_ctx, else_ctx);
aml_append(while_ctx, aml_increment(uid));
}
aml_append(while_ctx2, while_ctx);
/*
* in case FW negotiated ICH9_LPC_SMI_F_CPU_HOTPLUG_BIT,
* make upcall to FW, so it can pull in new CPUs before
* OS is notified and wakes them up
*/
if (opts.smi_path) {
ifctx = aml_if(aml_lgreater(num_added_cpus, zero));
{
aml_append(ifctx, aml_store(aml_int(OVMF_CPUHP_SMI_CMD),
aml_name("%s", opts.smi_path)));
}
aml_append(while_ctx2, ifctx);
}
/* Notify OSPM about new CPUs and clear insert events */
aml_append(while_ctx2, aml_store(zero, cpu_idx));
while_ctx = aml_while(aml_lless(cpu_idx, num_added_cpus));
{
aml_append(while_ctx,
aml_store(aml_derefof(aml_index(new_cpus, cpu_idx)),
uid));
aml_append(while_ctx,
aml_call2(CPU_NOTIFY_METHOD, uid, dev_chk));
aml_append(while_ctx, aml_store(uid, aml_debug()));
aml_append(while_ctx, aml_store(uid, cpu_selector));
aml_append(while_ctx, aml_store(one, ins_evt));
aml_append(while_ctx, aml_increment(cpu_idx));
}
aml_append(while_ctx2, while_ctx);
/*
* If another batch is needed, then it will resume scanning
* exactly at -- and not after -- the last CPU that's currently
* in CPU_ADDED_LIST. In other words, the last CPU in
* CPU_ADDED_LIST is going to be re-checked. That's OK: we've
* just cleared the insert event for *all* CPUs in
* CPU_ADDED_LIST, including the last one. So the scan will
* simply seek past it.
*/
}
aml_append(method, while_ctx2);
aml_append(method, aml_release(ctrl_lock));
}
aml_append(cpus_dev, method);
method = aml_method(CPU_OST_METHOD, 4, AML_SERIALIZED);
{
Aml *uid = aml_arg(0);
Aml *ev_cmd = aml_int(CPHP_OST_EVENT_CMD);
Aml *st_cmd = aml_int(CPHP_OST_STATUS_CMD);
aml_append(method, aml_acquire(ctrl_lock, 0xFFFF));
aml_append(method, aml_store(uid, cpu_selector));
aml_append(method, aml_store(ev_cmd, cpu_cmd));
aml_append(method, aml_store(aml_arg(1), cpu_data));
aml_append(method, aml_store(st_cmd, cpu_cmd));
aml_append(method, aml_store(aml_arg(2), cpu_data));
aml_append(method, aml_release(ctrl_lock));
}
aml_append(cpus_dev, method);
/* build Processor object for each processor */
for (i = 0; i < arch_ids->len; i++) {
Aml *dev;
Aml *uid = aml_int(i);
GArray *madt_buf = g_array_new(0, 1, 1);
int arch_id = arch_ids->cpus[i].arch_id;
if (opts.acpi_1_compatible && arch_id < 255) {
dev = aml_processor(i, 0, 0, CPU_NAME_FMT, i);
} else {
dev = aml_device(CPU_NAME_FMT, i);
aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
aml_append(dev, aml_name_decl("_UID", uid));
}
method = aml_method("_STA", 0, AML_SERIALIZED);
aml_append(method, aml_return(aml_call1(CPU_STS_METHOD, uid)));
aml_append(dev, method);
/* build _MAT object */
assert(adevc && adevc->madt_cpu);
adevc->madt_cpu(adev, i, arch_ids, madt_buf);
switch (madt_buf->data[0]) {
case ACPI_APIC_PROCESSOR: {
AcpiMadtProcessorApic *apic = (void *)madt_buf->data;
apic->flags = cpu_to_le32(1);
break;
}
case ACPI_APIC_LOCAL_X2APIC: {
AcpiMadtProcessorX2Apic *apic = (void *)madt_buf->data;
apic->flags = cpu_to_le32(1);
break;
}
default:
assert(0);
}
aml_append(dev, aml_name_decl("_MAT",
aml_buffer(madt_buf->len, (uint8_t *)madt_buf->data)));
g_array_free(madt_buf, true);
if (CPU(arch_ids->cpus[i].cpu) != first_cpu) {
method = aml_method("_EJ0", 1, AML_NOTSERIALIZED);
aml_append(method, aml_call1(CPU_EJECT_METHOD, uid));
aml_append(dev, method);
}
method = aml_method("_OST", 3, AML_SERIALIZED);
aml_append(method,
aml_call4(CPU_OST_METHOD, uid, aml_arg(0),
aml_arg(1), aml_arg(2))
);
aml_append(dev, method);
/* Linux guests discard SRAT info for non-present CPUs
* as a result _PXM is required for all CPUs which might
* be hot-plugged. For simplicity, add it for all CPUs.
*/
if (arch_ids->cpus[i].props.has_node_id) {
aml_append(dev, aml_name_decl("_PXM",
aml_int(arch_ids->cpus[i].props.node_id)));
}
aml_append(cpus_dev, dev);
}
}
aml_append(sb_scope, cpus_dev);
aml_append(table, sb_scope);
method = aml_method(event_handler_method, 0, AML_NOTSERIALIZED);
aml_append(method, aml_call0("\\_SB.CPUS." CPU_SCAN_METHOD));
aml_append(table, method);
g_free(cphp_res_path);
}