qemu-patch-raspberry4/hw/nvme/ns.c
Klaus Jensen 5ffbaeed16 hw/nvme: fix controller hot unplugging
Prior to this patch the nvme-ns devices are always children of the
NvmeBus owned by the NvmeCtrl. This causes the namespaces to be
unrealized when the parent device is removed. However, when subsystems
are involved, this is not what we want since the namespaces may be
attached to other controllers as well.

This patch adds an additional NvmeBus on the subsystem device. When
nvme-ns devices are realized, if the parent controller device is linked
to a subsystem, the parent bus is set to the subsystem one instead. This
makes sure that namespaces are kept alive and not unrealized.

Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
2021-07-26 21:09:38 +02:00

602 lines
17 KiB
C

/*
* QEMU NVM Express Virtual Namespace
*
* Copyright (c) 2019 CNEX Labs
* Copyright (c) 2020 Samsung Electronics
*
* Authors:
* Klaus Jensen <k.jensen@samsung.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See the
* COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "sysemu/sysemu.h"
#include "sysemu/block-backend.h"
#include "nvme.h"
#include "trace.h"
#define MIN_DISCARD_GRANULARITY (4 * KiB)
#define NVME_DEFAULT_ZONE_SIZE (128 * MiB)
void nvme_ns_init_format(NvmeNamespace *ns)
{
NvmeIdNs *id_ns = &ns->id_ns;
BlockDriverInfo bdi;
int npdg, nlbas, ret;
ns->lbaf = id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(id_ns->flbas)];
ns->lbasz = 1 << ns->lbaf.ds;
nlbas = ns->size / (ns->lbasz + ns->lbaf.ms);
id_ns->nsze = cpu_to_le64(nlbas);
/* no thin provisioning */
id_ns->ncap = id_ns->nsze;
id_ns->nuse = id_ns->ncap;
ns->moff = (int64_t)nlbas << ns->lbaf.ds;
npdg = ns->blkconf.discard_granularity / ns->lbasz;
ret = bdrv_get_info(blk_bs(ns->blkconf.blk), &bdi);
if (ret >= 0 && bdi.cluster_size > ns->blkconf.discard_granularity) {
npdg = bdi.cluster_size / ns->lbasz;
}
id_ns->npda = id_ns->npdg = npdg - 1;
}
static int nvme_ns_init(NvmeNamespace *ns, Error **errp)
{
static uint64_t ns_count;
NvmeIdNs *id_ns = &ns->id_ns;
uint8_t ds;
uint16_t ms;
int i;
ns->csi = NVME_CSI_NVM;
ns->status = 0x0;
ns->id_ns.dlfeat = 0x1;
/* support DULBE and I/O optimization fields */
id_ns->nsfeat |= (0x4 | 0x10);
if (ns->params.shared) {
id_ns->nmic |= NVME_NMIC_NS_SHARED;
}
/* Substitute a missing EUI-64 by an autogenerated one */
++ns_count;
if (!ns->params.eui64 && ns->params.eui64_default) {
ns->params.eui64 = ns_count + NVME_EUI64_DEFAULT;
}
/* simple copy */
id_ns->mssrl = cpu_to_le16(ns->params.mssrl);
id_ns->mcl = cpu_to_le32(ns->params.mcl);
id_ns->msrc = ns->params.msrc;
id_ns->eui64 = cpu_to_be64(ns->params.eui64);
ds = 31 - clz32(ns->blkconf.logical_block_size);
ms = ns->params.ms;
id_ns->mc = NVME_ID_NS_MC_EXTENDED | NVME_ID_NS_MC_SEPARATE;
if (ms && ns->params.mset) {
id_ns->flbas |= NVME_ID_NS_FLBAS_EXTENDED;
}
id_ns->dpc = 0x1f;
id_ns->dps = ns->params.pi;
if (ns->params.pi && ns->params.pil) {
id_ns->dps |= NVME_ID_NS_DPS_FIRST_EIGHT;
}
static const NvmeLBAF lbaf[16] = {
[0] = { .ds = 9 },
[1] = { .ds = 9, .ms = 8 },
[2] = { .ds = 9, .ms = 16 },
[3] = { .ds = 9, .ms = 64 },
[4] = { .ds = 12 },
[5] = { .ds = 12, .ms = 8 },
[6] = { .ds = 12, .ms = 16 },
[7] = { .ds = 12, .ms = 64 },
};
memcpy(&id_ns->lbaf, &lbaf, sizeof(lbaf));
id_ns->nlbaf = 7;
for (i = 0; i <= id_ns->nlbaf; i++) {
NvmeLBAF *lbaf = &id_ns->lbaf[i];
if (lbaf->ds == ds) {
if (lbaf->ms == ms) {
id_ns->flbas |= i;
goto lbaf_found;
}
}
}
/* add non-standard lba format */
id_ns->nlbaf++;
id_ns->lbaf[id_ns->nlbaf].ds = ds;
id_ns->lbaf[id_ns->nlbaf].ms = ms;
id_ns->flbas |= id_ns->nlbaf;
lbaf_found:
nvme_ns_init_format(ns);
return 0;
}
static int nvme_ns_init_blk(NvmeNamespace *ns, Error **errp)
{
bool read_only;
if (!blkconf_blocksizes(&ns->blkconf, errp)) {
return -1;
}
read_only = !blk_supports_write_perm(ns->blkconf.blk);
if (!blkconf_apply_backend_options(&ns->blkconf, read_only, false, errp)) {
return -1;
}
if (ns->blkconf.discard_granularity == -1) {
ns->blkconf.discard_granularity =
MAX(ns->blkconf.logical_block_size, MIN_DISCARD_GRANULARITY);
}
ns->size = blk_getlength(ns->blkconf.blk);
if (ns->size < 0) {
error_setg_errno(errp, -ns->size, "could not get blockdev size");
return -1;
}
return 0;
}
static int nvme_ns_zoned_check_calc_geometry(NvmeNamespace *ns, Error **errp)
{
uint64_t zone_size, zone_cap;
/* Make sure that the values of ZNS properties are sane */
if (ns->params.zone_size_bs) {
zone_size = ns->params.zone_size_bs;
} else {
zone_size = NVME_DEFAULT_ZONE_SIZE;
}
if (ns->params.zone_cap_bs) {
zone_cap = ns->params.zone_cap_bs;
} else {
zone_cap = zone_size;
}
if (zone_cap > zone_size) {
error_setg(errp, "zone capacity %"PRIu64"B exceeds "
"zone size %"PRIu64"B", zone_cap, zone_size);
return -1;
}
if (zone_size < ns->lbasz) {
error_setg(errp, "zone size %"PRIu64"B too small, "
"must be at least %zuB", zone_size, ns->lbasz);
return -1;
}
if (zone_cap < ns->lbasz) {
error_setg(errp, "zone capacity %"PRIu64"B too small, "
"must be at least %zuB", zone_cap, ns->lbasz);
return -1;
}
/*
* Save the main zone geometry values to avoid
* calculating them later again.
*/
ns->zone_size = zone_size / ns->lbasz;
ns->zone_capacity = zone_cap / ns->lbasz;
ns->num_zones = le64_to_cpu(ns->id_ns.nsze) / ns->zone_size;
/* Do a few more sanity checks of ZNS properties */
if (!ns->num_zones) {
error_setg(errp,
"insufficient drive capacity, must be at least the size "
"of one zone (%"PRIu64"B)", zone_size);
return -1;
}
return 0;
}
static void nvme_ns_zoned_init_state(NvmeNamespace *ns)
{
uint64_t start = 0, zone_size = ns->zone_size;
uint64_t capacity = ns->num_zones * zone_size;
NvmeZone *zone;
int i;
ns->zone_array = g_new0(NvmeZone, ns->num_zones);
if (ns->params.zd_extension_size) {
ns->zd_extensions = g_malloc0(ns->params.zd_extension_size *
ns->num_zones);
}
QTAILQ_INIT(&ns->exp_open_zones);
QTAILQ_INIT(&ns->imp_open_zones);
QTAILQ_INIT(&ns->closed_zones);
QTAILQ_INIT(&ns->full_zones);
zone = ns->zone_array;
for (i = 0; i < ns->num_zones; i++, zone++) {
if (start + zone_size > capacity) {
zone_size = capacity - start;
}
zone->d.zt = NVME_ZONE_TYPE_SEQ_WRITE;
nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY);
zone->d.za = 0;
zone->d.zcap = ns->zone_capacity;
zone->d.zslba = start;
zone->d.wp = start;
zone->w_ptr = start;
start += zone_size;
}
ns->zone_size_log2 = 0;
if (is_power_of_2(ns->zone_size)) {
ns->zone_size_log2 = 63 - clz64(ns->zone_size);
}
}
static void nvme_ns_init_zoned(NvmeNamespace *ns)
{
NvmeIdNsZoned *id_ns_z;
int i;
nvme_ns_zoned_init_state(ns);
id_ns_z = g_malloc0(sizeof(NvmeIdNsZoned));
/* MAR/MOR are zeroes-based, FFFFFFFFFh means no limit */
id_ns_z->mar = cpu_to_le32(ns->params.max_active_zones - 1);
id_ns_z->mor = cpu_to_le32(ns->params.max_open_zones - 1);
id_ns_z->zoc = 0;
id_ns_z->ozcs = ns->params.cross_zone_read ? 0x01 : 0x00;
for (i = 0; i <= ns->id_ns.nlbaf; i++) {
id_ns_z->lbafe[i].zsze = cpu_to_le64(ns->zone_size);
id_ns_z->lbafe[i].zdes =
ns->params.zd_extension_size >> 6; /* Units of 64B */
}
ns->csi = NVME_CSI_ZONED;
ns->id_ns.nsze = cpu_to_le64(ns->num_zones * ns->zone_size);
ns->id_ns.ncap = ns->id_ns.nsze;
ns->id_ns.nuse = ns->id_ns.ncap;
/*
* The device uses the BDRV_BLOCK_ZERO flag to determine the "deallocated"
* status of logical blocks. Since the spec defines that logical blocks
* SHALL be deallocated when then zone is in the Empty or Offline states,
* we can only support DULBE if the zone size is a multiple of the
* calculated NPDG.
*/
if (ns->zone_size % (ns->id_ns.npdg + 1)) {
warn_report("the zone size (%"PRIu64" blocks) is not a multiple of "
"the calculated deallocation granularity (%d blocks); "
"DULBE support disabled",
ns->zone_size, ns->id_ns.npdg + 1);
ns->id_ns.nsfeat &= ~0x4;
}
ns->id_ns_zoned = id_ns_z;
}
static void nvme_clear_zone(NvmeNamespace *ns, NvmeZone *zone)
{
uint8_t state;
zone->w_ptr = zone->d.wp;
state = nvme_get_zone_state(zone);
if (zone->d.wp != zone->d.zslba ||
(zone->d.za & NVME_ZA_ZD_EXT_VALID)) {
if (state != NVME_ZONE_STATE_CLOSED) {
trace_pci_nvme_clear_ns_close(state, zone->d.zslba);
nvme_set_zone_state(zone, NVME_ZONE_STATE_CLOSED);
}
nvme_aor_inc_active(ns);
QTAILQ_INSERT_HEAD(&ns->closed_zones, zone, entry);
} else {
trace_pci_nvme_clear_ns_reset(state, zone->d.zslba);
nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY);
}
}
/*
* Close all the zones that are currently open.
*/
static void nvme_zoned_ns_shutdown(NvmeNamespace *ns)
{
NvmeZone *zone, *next;
QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
nvme_aor_dec_active(ns);
nvme_clear_zone(ns, zone);
}
QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
nvme_aor_dec_open(ns);
nvme_aor_dec_active(ns);
nvme_clear_zone(ns, zone);
}
QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
nvme_aor_dec_open(ns);
nvme_aor_dec_active(ns);
nvme_clear_zone(ns, zone);
}
assert(ns->nr_open_zones == 0);
}
static int nvme_ns_check_constraints(NvmeNamespace *ns, Error **errp)
{
if (!ns->blkconf.blk) {
error_setg(errp, "block backend not configured");
return -1;
}
if (ns->params.pi && ns->params.ms < 8) {
error_setg(errp, "at least 8 bytes of metadata required to enable "
"protection information");
return -1;
}
if (ns->params.nsid > NVME_MAX_NAMESPACES) {
error_setg(errp, "invalid namespace id (must be between 0 and %d)",
NVME_MAX_NAMESPACES);
return -1;
}
if (ns->params.zoned) {
if (ns->params.max_active_zones) {
if (ns->params.max_open_zones > ns->params.max_active_zones) {
error_setg(errp, "max_open_zones (%u) exceeds "
"max_active_zones (%u)", ns->params.max_open_zones,
ns->params.max_active_zones);
return -1;
}
if (!ns->params.max_open_zones) {
ns->params.max_open_zones = ns->params.max_active_zones;
}
}
if (ns->params.zd_extension_size) {
if (ns->params.zd_extension_size & 0x3f) {
error_setg(errp, "zone descriptor extension size must be a "
"multiple of 64B");
return -1;
}
if ((ns->params.zd_extension_size >> 6) > 0xff) {
error_setg(errp,
"zone descriptor extension size is too large");
return -1;
}
}
}
return 0;
}
int nvme_ns_setup(NvmeNamespace *ns, Error **errp)
{
if (nvme_ns_check_constraints(ns, errp)) {
return -1;
}
if (nvme_ns_init_blk(ns, errp)) {
return -1;
}
if (nvme_ns_init(ns, errp)) {
return -1;
}
if (ns->params.zoned) {
if (nvme_ns_zoned_check_calc_geometry(ns, errp) != 0) {
return -1;
}
nvme_ns_init_zoned(ns);
}
return 0;
}
void nvme_ns_drain(NvmeNamespace *ns)
{
blk_drain(ns->blkconf.blk);
}
void nvme_ns_shutdown(NvmeNamespace *ns)
{
blk_flush(ns->blkconf.blk);
if (ns->params.zoned) {
nvme_zoned_ns_shutdown(ns);
}
}
void nvme_ns_cleanup(NvmeNamespace *ns)
{
if (ns->params.zoned) {
g_free(ns->id_ns_zoned);
g_free(ns->zone_array);
g_free(ns->zd_extensions);
}
}
static void nvme_ns_unrealize(DeviceState *dev)
{
NvmeNamespace *ns = NVME_NS(dev);
nvme_ns_drain(ns);
nvme_ns_shutdown(ns);
nvme_ns_cleanup(ns);
}
static void nvme_ns_realize(DeviceState *dev, Error **errp)
{
NvmeNamespace *ns = NVME_NS(dev);
BusState *s = qdev_get_parent_bus(dev);
NvmeCtrl *n = NVME(s->parent);
NvmeSubsystem *subsys = n->subsys;
uint32_t nsid = ns->params.nsid;
int i;
if (!n->subsys) {
if (ns->params.detached) {
error_setg(errp, "detached requires that the nvme device is "
"linked to an nvme-subsys device");
return;
}
if (ns->params.shared) {
error_setg(errp, "shared requires that the nvme device is "
"linked to an nvme-subsys device");
return;
}
} else {
/*
* If this namespace belongs to a subsystem (through a link on the
* controller device), reparent the device.
*/
if (!qdev_set_parent_bus(dev, &subsys->bus.parent_bus, errp)) {
return;
}
}
if (nvme_ns_setup(ns, errp)) {
return;
}
if (!nsid) {
for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
if (nvme_ns(n, i) || nvme_subsys_ns(subsys, i)) {
continue;
}
nsid = ns->params.nsid = i;
break;
}
if (!nsid) {
error_setg(errp, "no free namespace id");
return;
}
} else {
if (nvme_ns(n, nsid) || nvme_subsys_ns(subsys, nsid)) {
error_setg(errp, "namespace id '%d' already allocated", nsid);
return;
}
}
if (subsys) {
subsys->namespaces[nsid] = ns;
if (ns->params.detached) {
return;
}
if (ns->params.shared) {
for (i = 0; i < ARRAY_SIZE(subsys->ctrls); i++) {
NvmeCtrl *ctrl = subsys->ctrls[i];
if (ctrl) {
nvme_attach_ns(ctrl, ns);
}
}
return;
}
}
nvme_attach_ns(n, ns);
}
static Property nvme_ns_props[] = {
DEFINE_BLOCK_PROPERTIES(NvmeNamespace, blkconf),
DEFINE_PROP_BOOL("detached", NvmeNamespace, params.detached, false),
DEFINE_PROP_BOOL("shared", NvmeNamespace, params.shared, false),
DEFINE_PROP_UINT32("nsid", NvmeNamespace, params.nsid, 0),
DEFINE_PROP_UUID("uuid", NvmeNamespace, params.uuid),
DEFINE_PROP_UINT64("eui64", NvmeNamespace, params.eui64, 0),
DEFINE_PROP_UINT16("ms", NvmeNamespace, params.ms, 0),
DEFINE_PROP_UINT8("mset", NvmeNamespace, params.mset, 0),
DEFINE_PROP_UINT8("pi", NvmeNamespace, params.pi, 0),
DEFINE_PROP_UINT8("pil", NvmeNamespace, params.pil, 0),
DEFINE_PROP_UINT16("mssrl", NvmeNamespace, params.mssrl, 128),
DEFINE_PROP_UINT32("mcl", NvmeNamespace, params.mcl, 128),
DEFINE_PROP_UINT8("msrc", NvmeNamespace, params.msrc, 127),
DEFINE_PROP_BOOL("zoned", NvmeNamespace, params.zoned, false),
DEFINE_PROP_SIZE("zoned.zone_size", NvmeNamespace, params.zone_size_bs,
NVME_DEFAULT_ZONE_SIZE),
DEFINE_PROP_SIZE("zoned.zone_capacity", NvmeNamespace, params.zone_cap_bs,
0),
DEFINE_PROP_BOOL("zoned.cross_read", NvmeNamespace,
params.cross_zone_read, false),
DEFINE_PROP_UINT32("zoned.max_active", NvmeNamespace,
params.max_active_zones, 0),
DEFINE_PROP_UINT32("zoned.max_open", NvmeNamespace,
params.max_open_zones, 0),
DEFINE_PROP_UINT32("zoned.descr_ext_size", NvmeNamespace,
params.zd_extension_size, 0),
DEFINE_PROP_BOOL("eui64-default", NvmeNamespace, params.eui64_default,
true),
DEFINE_PROP_END_OF_LIST(),
};
static void nvme_ns_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->bus_type = TYPE_NVME_BUS;
dc->realize = nvme_ns_realize;
dc->unrealize = nvme_ns_unrealize;
device_class_set_props(dc, nvme_ns_props);
dc->desc = "Virtual NVMe namespace";
}
static void nvme_ns_instance_init(Object *obj)
{
NvmeNamespace *ns = NVME_NS(obj);
char *bootindex = g_strdup_printf("/namespace@%d,0", ns->params.nsid);
device_add_bootindex_property(obj, &ns->bootindex, "bootindex",
bootindex, DEVICE(obj));
g_free(bootindex);
}
static const TypeInfo nvme_ns_info = {
.name = TYPE_NVME_NS,
.parent = TYPE_DEVICE,
.class_init = nvme_ns_class_init,
.instance_size = sizeof(NvmeNamespace),
.instance_init = nvme_ns_instance_init,
};
static void nvme_ns_register_types(void)
{
type_register_static(&nvme_ns_info);
}
type_init(nvme_ns_register_types)