qemu-patch-raspberry4/tests/libqos/virtio-pci.c
David Gibson 246fc0fb66 libqos: Give qvirtio_config_read*() consistent semantics
The 'addr' parameter to qvirtio_config_read*() doesn't have a consistent
meaning: when using the virtio-pci versions, it's a full PCI space address,
but for virtio-mmio, it's an offset from the device's base mmio address.

This means that the callers need to do different things to calculate the
addresses in the two cases, which rather defeats the purpose of function
pointer backends.

All the current users of these functions are using them to retrieve
variables from the device specific portion of the virtio config space.
So, this patch alters the semantics to always be an offset into that
device specific config area.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Greg Kurz <groug@kaod.org>
2016-10-28 09:38:27 +11:00

392 lines
12 KiB
C

/*
* libqos virtio PCI driver
*
* Copyright (c) 2014 Marc Marí
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "libqtest.h"
#include "libqos/virtio.h"
#include "libqos/virtio-pci.h"
#include "libqos/pci.h"
#include "libqos/pci-pc.h"
#include "libqos/malloc.h"
#include "libqos/malloc-pc.h"
#include "standard-headers/linux/virtio_ring.h"
#include "standard-headers/linux/virtio_pci.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_regs.h"
typedef struct QVirtioPCIForeachData {
void (*func)(QVirtioDevice *d, void *data);
uint16_t device_type;
void *user_data;
} QVirtioPCIForeachData;
static QVirtioPCIDevice *qpcidevice_to_qvirtiodevice(QPCIDevice *pdev)
{
QVirtioPCIDevice *vpcidev;
vpcidev = g_malloc0(sizeof(*vpcidev));
if (pdev) {
vpcidev->pdev = pdev;
vpcidev->vdev.device_type =
qpci_config_readw(vpcidev->pdev, PCI_SUBSYSTEM_ID);
}
vpcidev->config_msix_entry = -1;
return vpcidev;
}
static void qvirtio_pci_foreach_callback(
QPCIDevice *dev, int devfn, void *data)
{
QVirtioPCIForeachData *d = data;
QVirtioPCIDevice *vpcidev = qpcidevice_to_qvirtiodevice(dev);
if (vpcidev->vdev.device_type == d->device_type) {
d->func(&vpcidev->vdev, d->user_data);
} else {
g_free(vpcidev);
}
}
static void qvirtio_pci_assign_device(QVirtioDevice *d, void *data)
{
QVirtioPCIDevice **vpcidev = data;
*vpcidev = (QVirtioPCIDevice *)d;
}
#define CONFIG_BASE(dev) \
((dev)->addr + VIRTIO_PCI_CONFIG_OFF((dev)->pdev->msix_enabled))
static uint8_t qvirtio_pci_config_readb(QVirtioDevice *d, uint64_t off)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
return qpci_io_readb(dev->pdev, CONFIG_BASE(dev) + off);
}
/* PCI is always read in little-endian order
* but virtio ( < 1.0) is in guest order
* so with a big-endian guest the order has been reversed,
* reverse it again
* virtio-1.0 is always little-endian, like PCI, but this
* case will be managed inside qvirtio_is_big_endian()
*/
static uint16_t qvirtio_pci_config_readw(QVirtioDevice *d, uint64_t off)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
uint16_t value;
value = qpci_io_readw(dev->pdev, CONFIG_BASE(dev) + off);
if (qvirtio_is_big_endian(d)) {
value = bswap16(value);
}
return value;
}
static uint32_t qvirtio_pci_config_readl(QVirtioDevice *d, uint64_t off)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
uint32_t value;
value = qpci_io_readl(dev->pdev, CONFIG_BASE(dev) + off);
if (qvirtio_is_big_endian(d)) {
value = bswap32(value);
}
return value;
}
static uint64_t qvirtio_pci_config_readq(QVirtioDevice *d, uint64_t off)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
int i;
uint64_t u64 = 0;
if (qvirtio_is_big_endian(d)) {
for (i = 0; i < 8; ++i) {
u64 |= (uint64_t)qpci_io_readb(dev->pdev, CONFIG_BASE(dev)
+ off + i) << (7 - i) * 8;
}
} else {
for (i = 0; i < 8; ++i) {
u64 |= (uint64_t)qpci_io_readb(dev->pdev, CONFIG_BASE(dev)
+ off + i) << i * 8;
}
}
return u64;
}
static uint32_t qvirtio_pci_get_features(QVirtioDevice *d)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
return qpci_io_readl(dev->pdev, dev->addr + VIRTIO_PCI_HOST_FEATURES);
}
static void qvirtio_pci_set_features(QVirtioDevice *d, uint32_t features)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
qpci_io_writel(dev->pdev, dev->addr + VIRTIO_PCI_GUEST_FEATURES, features);
}
static uint32_t qvirtio_pci_get_guest_features(QVirtioDevice *d)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
return qpci_io_readl(dev->pdev, dev->addr + VIRTIO_PCI_GUEST_FEATURES);
}
static uint8_t qvirtio_pci_get_status(QVirtioDevice *d)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
return qpci_io_readb(dev->pdev, dev->addr + VIRTIO_PCI_STATUS);
}
static void qvirtio_pci_set_status(QVirtioDevice *d, uint8_t status)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
qpci_io_writeb(dev->pdev, dev->addr + VIRTIO_PCI_STATUS, status);
}
static bool qvirtio_pci_get_queue_isr_status(QVirtioDevice *d, QVirtQueue *vq)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
QVirtQueuePCI *vqpci = (QVirtQueuePCI *)vq;
uint32_t data;
if (dev->pdev->msix_enabled) {
g_assert_cmpint(vqpci->msix_entry, !=, -1);
if (qpci_msix_masked(dev->pdev, vqpci->msix_entry)) {
/* No ISR checking should be done if masked, but read anyway */
return qpci_msix_pending(dev->pdev, vqpci->msix_entry);
} else {
data = readl(vqpci->msix_addr);
if (data == vqpci->msix_data) {
writel(vqpci->msix_addr, 0);
return true;
} else {
return false;
}
}
} else {
return qpci_io_readb(dev->pdev, dev->addr + VIRTIO_PCI_ISR) & 1;
}
}
static bool qvirtio_pci_get_config_isr_status(QVirtioDevice *d)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
uint32_t data;
if (dev->pdev->msix_enabled) {
g_assert_cmpint(dev->config_msix_entry, !=, -1);
if (qpci_msix_masked(dev->pdev, dev->config_msix_entry)) {
/* No ISR checking should be done if masked, but read anyway */
return qpci_msix_pending(dev->pdev, dev->config_msix_entry);
} else {
data = readl(dev->config_msix_addr);
if (data == dev->config_msix_data) {
writel(dev->config_msix_addr, 0);
return true;
} else {
return false;
}
}
} else {
return qpci_io_readb(dev->pdev, dev->addr + VIRTIO_PCI_ISR) & 2;
}
}
static void qvirtio_pci_queue_select(QVirtioDevice *d, uint16_t index)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
qpci_io_writeb(dev->pdev, dev->addr + VIRTIO_PCI_QUEUE_SEL, index);
}
static uint16_t qvirtio_pci_get_queue_size(QVirtioDevice *d)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
return qpci_io_readw(dev->pdev, dev->addr + VIRTIO_PCI_QUEUE_NUM);
}
static void qvirtio_pci_set_queue_address(QVirtioDevice *d, uint32_t pfn)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
qpci_io_writel(dev->pdev, dev->addr + VIRTIO_PCI_QUEUE_PFN, pfn);
}
static QVirtQueue *qvirtio_pci_virtqueue_setup(QVirtioDevice *d,
QGuestAllocator *alloc, uint16_t index)
{
uint32_t feat;
uint64_t addr;
QVirtQueuePCI *vqpci;
vqpci = g_malloc0(sizeof(*vqpci));
feat = qvirtio_pci_get_guest_features(d);
qvirtio_pci_queue_select(d, index);
vqpci->vq.index = index;
vqpci->vq.size = qvirtio_pci_get_queue_size(d);
vqpci->vq.free_head = 0;
vqpci->vq.num_free = vqpci->vq.size;
vqpci->vq.align = VIRTIO_PCI_VRING_ALIGN;
vqpci->vq.indirect = (feat & (1u << VIRTIO_RING_F_INDIRECT_DESC)) != 0;
vqpci->vq.event = (feat & (1u << VIRTIO_RING_F_EVENT_IDX)) != 0;
vqpci->msix_entry = -1;
vqpci->msix_addr = 0;
vqpci->msix_data = 0x12345678;
/* Check different than 0 */
g_assert_cmpint(vqpci->vq.size, !=, 0);
/* Check power of 2 */
g_assert_cmpint(vqpci->vq.size & (vqpci->vq.size - 1), ==, 0);
addr = guest_alloc(alloc, qvring_size(vqpci->vq.size,
VIRTIO_PCI_VRING_ALIGN));
qvring_init(alloc, &vqpci->vq, addr);
qvirtio_pci_set_queue_address(d, vqpci->vq.desc / VIRTIO_PCI_VRING_ALIGN);
return &vqpci->vq;
}
static void qvirtio_pci_virtqueue_cleanup(QVirtQueue *vq,
QGuestAllocator *alloc)
{
QVirtQueuePCI *vqpci = container_of(vq, QVirtQueuePCI, vq);
guest_free(alloc, vq->desc);
g_free(vqpci);
}
static void qvirtio_pci_virtqueue_kick(QVirtioDevice *d, QVirtQueue *vq)
{
QVirtioPCIDevice *dev = (QVirtioPCIDevice *)d;
qpci_io_writew(dev->pdev, dev->addr + VIRTIO_PCI_QUEUE_NOTIFY, vq->index);
}
const QVirtioBus qvirtio_pci = {
.config_readb = qvirtio_pci_config_readb,
.config_readw = qvirtio_pci_config_readw,
.config_readl = qvirtio_pci_config_readl,
.config_readq = qvirtio_pci_config_readq,
.get_features = qvirtio_pci_get_features,
.set_features = qvirtio_pci_set_features,
.get_guest_features = qvirtio_pci_get_guest_features,
.get_status = qvirtio_pci_get_status,
.set_status = qvirtio_pci_set_status,
.get_queue_isr_status = qvirtio_pci_get_queue_isr_status,
.get_config_isr_status = qvirtio_pci_get_config_isr_status,
.queue_select = qvirtio_pci_queue_select,
.get_queue_size = qvirtio_pci_get_queue_size,
.set_queue_address = qvirtio_pci_set_queue_address,
.virtqueue_setup = qvirtio_pci_virtqueue_setup,
.virtqueue_cleanup = qvirtio_pci_virtqueue_cleanup,
.virtqueue_kick = qvirtio_pci_virtqueue_kick,
};
void qvirtio_pci_foreach(QPCIBus *bus, uint16_t device_type,
void (*func)(QVirtioDevice *d, void *data), void *data)
{
QVirtioPCIForeachData d = { .func = func,
.device_type = device_type,
.user_data = data };
qpci_device_foreach(bus, PCI_VENDOR_ID_REDHAT_QUMRANET, -1,
qvirtio_pci_foreach_callback, &d);
}
QVirtioPCIDevice *qvirtio_pci_device_find(QPCIBus *bus, uint16_t device_type)
{
QVirtioPCIDevice *dev = NULL;
qvirtio_pci_foreach(bus, device_type, qvirtio_pci_assign_device, &dev);
dev->vdev.bus = &qvirtio_pci;
return dev;
}
void qvirtio_pci_device_enable(QVirtioPCIDevice *d)
{
qpci_device_enable(d->pdev);
d->addr = qpci_iomap(d->pdev, 0, NULL);
g_assert(d->addr != NULL);
}
void qvirtio_pci_device_disable(QVirtioPCIDevice *d)
{
qpci_iounmap(d->pdev, d->addr);
d->addr = NULL;
}
void qvirtqueue_pci_msix_setup(QVirtioPCIDevice *d, QVirtQueuePCI *vqpci,
QGuestAllocator *alloc, uint16_t entry)
{
uint16_t vector;
uint32_t control;
void *addr;
g_assert(d->pdev->msix_enabled);
addr = d->pdev->msix_table + (entry * 16);
g_assert_cmpint(entry, >=, 0);
g_assert_cmpint(entry, <, qpci_msix_table_size(d->pdev));
vqpci->msix_entry = entry;
vqpci->msix_addr = guest_alloc(alloc, 4);
qpci_io_writel(d->pdev, addr + PCI_MSIX_ENTRY_LOWER_ADDR,
vqpci->msix_addr & ~0UL);
qpci_io_writel(d->pdev, addr + PCI_MSIX_ENTRY_UPPER_ADDR,
(vqpci->msix_addr >> 32) & ~0UL);
qpci_io_writel(d->pdev, addr + PCI_MSIX_ENTRY_DATA, vqpci->msix_data);
control = qpci_io_readl(d->pdev, addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
qpci_io_writel(d->pdev, addr + PCI_MSIX_ENTRY_VECTOR_CTRL,
control & ~PCI_MSIX_ENTRY_CTRL_MASKBIT);
qvirtio_pci_queue_select(&d->vdev, vqpci->vq.index);
qpci_io_writew(d->pdev, d->addr + VIRTIO_MSI_QUEUE_VECTOR, entry);
vector = qpci_io_readw(d->pdev, d->addr + VIRTIO_MSI_QUEUE_VECTOR);
g_assert_cmphex(vector, !=, VIRTIO_MSI_NO_VECTOR);
}
void qvirtio_pci_set_msix_configuration_vector(QVirtioPCIDevice *d,
QGuestAllocator *alloc, uint16_t entry)
{
uint16_t vector;
uint32_t control;
void *addr;
g_assert(d->pdev->msix_enabled);
addr = d->pdev->msix_table + (entry * 16);
g_assert_cmpint(entry, >=, 0);
g_assert_cmpint(entry, <, qpci_msix_table_size(d->pdev));
d->config_msix_entry = entry;
d->config_msix_data = 0x12345678;
d->config_msix_addr = guest_alloc(alloc, 4);
qpci_io_writel(d->pdev, addr + PCI_MSIX_ENTRY_LOWER_ADDR,
d->config_msix_addr & ~0UL);
qpci_io_writel(d->pdev, addr + PCI_MSIX_ENTRY_UPPER_ADDR,
(d->config_msix_addr >> 32) & ~0UL);
qpci_io_writel(d->pdev, addr + PCI_MSIX_ENTRY_DATA, d->config_msix_data);
control = qpci_io_readl(d->pdev, addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
qpci_io_writel(d->pdev, addr + PCI_MSIX_ENTRY_VECTOR_CTRL,
control & ~PCI_MSIX_ENTRY_CTRL_MASKBIT);
qpci_io_writew(d->pdev, d->addr + VIRTIO_MSI_CONFIG_VECTOR, entry);
vector = qpci_io_readw(d->pdev, d->addr + VIRTIO_MSI_CONFIG_VECTOR);
g_assert_cmphex(vector, !=, VIRTIO_MSI_NO_VECTOR);
}