qemu-patch-raspberry4/hw/eccmemctl.c
Alexander Graf 2507c12ab0 Add endianness as io mem parameter
As stated before, devices can be little, big or native endian. The
target endianness is not of their concern, so we need to push things
down a level.

This patch adds a parameter to cpu_register_io_memory that allows a
device to choose its endianness. For now, all devices simply choose
native endian, because that's the same behavior as before.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-12-11 15:24:25 +00:00

333 lines
11 KiB
C

/*
* QEMU Sparc Sun4m ECC memory controller emulation
*
* Copyright (c) 2007 Robert Reif
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "sysbus.h"
#include "trace.h"
/* There are 3 versions of this chip used in SMP sun4m systems:
* MCC (version 0, implementation 0) SS-600MP
* EMC (version 0, implementation 1) SS-10
* SMC (version 0, implementation 2) SS-10SX and SS-20
*
* Chipset docs:
* "Sun-4M System Architecture (revision 2.0) by Chuck Narad", 950-1373-01,
* http://mediacast.sun.com/users/Barton808/media/Sun4M_SystemArchitecture_edited2.pdf
*/
#define ECC_MCC 0x00000000
#define ECC_EMC 0x10000000
#define ECC_SMC 0x20000000
/* Register indexes */
#define ECC_MER 0 /* Memory Enable Register */
#define ECC_MDR 1 /* Memory Delay Register */
#define ECC_MFSR 2 /* Memory Fault Status Register */
#define ECC_VCR 3 /* Video Configuration Register */
#define ECC_MFAR0 4 /* Memory Fault Address Register 0 */
#define ECC_MFAR1 5 /* Memory Fault Address Register 1 */
#define ECC_DR 6 /* Diagnostic Register */
#define ECC_ECR0 7 /* Event Count Register 0 */
#define ECC_ECR1 8 /* Event Count Register 1 */
/* ECC fault control register */
#define ECC_MER_EE 0x00000001 /* Enable ECC checking */
#define ECC_MER_EI 0x00000002 /* Enable Interrupts on
correctable errors */
#define ECC_MER_MRR0 0x00000004 /* SIMM 0 */
#define ECC_MER_MRR1 0x00000008 /* SIMM 1 */
#define ECC_MER_MRR2 0x00000010 /* SIMM 2 */
#define ECC_MER_MRR3 0x00000020 /* SIMM 3 */
#define ECC_MER_MRR4 0x00000040 /* SIMM 4 */
#define ECC_MER_MRR5 0x00000080 /* SIMM 5 */
#define ECC_MER_MRR6 0x00000100 /* SIMM 6 */
#define ECC_MER_MRR7 0x00000200 /* SIMM 7 */
#define ECC_MER_REU 0x00000100 /* Memory Refresh Enable (600MP) */
#define ECC_MER_MRR 0x000003fc /* MRR mask */
#define ECC_MER_A 0x00000400 /* Memory controller addr map select */
#define ECC_MER_DCI 0x00000800 /* Disables Coherent Invalidate ACK */
#define ECC_MER_VER 0x0f000000 /* Version */
#define ECC_MER_IMPL 0xf0000000 /* Implementation */
#define ECC_MER_MASK_0 0x00000103 /* Version 0 (MCC) mask */
#define ECC_MER_MASK_1 0x00000bff /* Version 1 (EMC) mask */
#define ECC_MER_MASK_2 0x00000bff /* Version 2 (SMC) mask */
/* ECC memory delay register */
#define ECC_MDR_RRI 0x000003ff /* Refresh Request Interval */
#define ECC_MDR_MI 0x00001c00 /* MIH Delay */
#define ECC_MDR_CI 0x0000e000 /* Coherent Invalidate Delay */
#define ECC_MDR_MDL 0x001f0000 /* MBus Master arbitration delay */
#define ECC_MDR_MDH 0x03e00000 /* MBus Master arbitration delay */
#define ECC_MDR_GAD 0x7c000000 /* Graphics Arbitration Delay */
#define ECC_MDR_RSC 0x80000000 /* Refresh load control */
#define ECC_MDR_MASK 0x7fffffff
/* ECC fault status register */
#define ECC_MFSR_CE 0x00000001 /* Correctable error */
#define ECC_MFSR_BS 0x00000002 /* C2 graphics bad slot access */
#define ECC_MFSR_TO 0x00000004 /* Timeout on write */
#define ECC_MFSR_UE 0x00000008 /* Uncorrectable error */
#define ECC_MFSR_DW 0x000000f0 /* Index of double word in block */
#define ECC_MFSR_SYND 0x0000ff00 /* Syndrome for correctable error */
#define ECC_MFSR_ME 0x00010000 /* Multiple errors */
#define ECC_MFSR_C2ERR 0x00020000 /* C2 graphics error */
/* ECC fault address register 0 */
#define ECC_MFAR0_PADDR 0x0000000f /* PA[32-35] */
#define ECC_MFAR0_TYPE 0x000000f0 /* Transaction type */
#define ECC_MFAR0_SIZE 0x00000700 /* Transaction size */
#define ECC_MFAR0_CACHE 0x00000800 /* Mapped cacheable */
#define ECC_MFAR0_LOCK 0x00001000 /* Error occurred in atomic cycle */
#define ECC_MFAR0_BMODE 0x00002000 /* Boot mode */
#define ECC_MFAR0_VADDR 0x003fc000 /* VA[12-19] (superset bits) */
#define ECC_MFAR0_S 0x08000000 /* Supervisor mode */
#define ECC_MFARO_MID 0xf0000000 /* Module ID */
/* ECC diagnostic register */
#define ECC_DR_CBX 0x00000001
#define ECC_DR_CB0 0x00000002
#define ECC_DR_CB1 0x00000004
#define ECC_DR_CB2 0x00000008
#define ECC_DR_CB4 0x00000010
#define ECC_DR_CB8 0x00000020
#define ECC_DR_CB16 0x00000040
#define ECC_DR_CB32 0x00000080
#define ECC_DR_DMODE 0x00000c00
#define ECC_NREGS 9
#define ECC_SIZE (ECC_NREGS * sizeof(uint32_t))
#define ECC_DIAG_SIZE 4
#define ECC_DIAG_MASK (ECC_DIAG_SIZE - 1)
typedef struct ECCState {
SysBusDevice busdev;
qemu_irq irq;
uint32_t regs[ECC_NREGS];
uint8_t diag[ECC_DIAG_SIZE];
uint32_t version;
} ECCState;
static void ecc_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
ECCState *s = opaque;
switch (addr >> 2) {
case ECC_MER:
if (s->version == ECC_MCC)
s->regs[ECC_MER] = (val & ECC_MER_MASK_0);
else if (s->version == ECC_EMC)
s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_1);
else if (s->version == ECC_SMC)
s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_2);
trace_ecc_mem_writel_mer(val);
break;
case ECC_MDR:
s->regs[ECC_MDR] = val & ECC_MDR_MASK;
trace_ecc_mem_writel_mdr(val);
break;
case ECC_MFSR:
s->regs[ECC_MFSR] = val;
qemu_irq_lower(s->irq);
trace_ecc_mem_writel_mfsr(val);
break;
case ECC_VCR:
s->regs[ECC_VCR] = val;
trace_ecc_mem_writel_vcr(val);
break;
case ECC_DR:
s->regs[ECC_DR] = val;
trace_ecc_mem_writel_dr(val);
break;
case ECC_ECR0:
s->regs[ECC_ECR0] = val;
trace_ecc_mem_writel_ecr0(val);
break;
case ECC_ECR1:
s->regs[ECC_ECR0] = val;
trace_ecc_mem_writel_ecr1(val);
break;
}
}
static uint32_t ecc_mem_readl(void *opaque, target_phys_addr_t addr)
{
ECCState *s = opaque;
uint32_t ret = 0;
switch (addr >> 2) {
case ECC_MER:
ret = s->regs[ECC_MER];
trace_ecc_mem_readl_mer(ret);
break;
case ECC_MDR:
ret = s->regs[ECC_MDR];
trace_ecc_mem_readl_mdr(ret);
break;
case ECC_MFSR:
ret = s->regs[ECC_MFSR];
trace_ecc_mem_readl_mfsr(ret);
break;
case ECC_VCR:
ret = s->regs[ECC_VCR];
trace_ecc_mem_readl_vcr(ret);
break;
case ECC_MFAR0:
ret = s->regs[ECC_MFAR0];
trace_ecc_mem_readl_mfar0(ret);
break;
case ECC_MFAR1:
ret = s->regs[ECC_MFAR1];
trace_ecc_mem_readl_mfar1(ret);
break;
case ECC_DR:
ret = s->regs[ECC_DR];
trace_ecc_mem_readl_dr(ret);
break;
case ECC_ECR0:
ret = s->regs[ECC_ECR0];
trace_ecc_mem_readl_ecr0(ret);
break;
case ECC_ECR1:
ret = s->regs[ECC_ECR0];
trace_ecc_mem_readl_ecr1(ret);
break;
}
return ret;
}
static CPUReadMemoryFunc * const ecc_mem_read[3] = {
NULL,
NULL,
ecc_mem_readl,
};
static CPUWriteMemoryFunc * const ecc_mem_write[3] = {
NULL,
NULL,
ecc_mem_writel,
};
static void ecc_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
ECCState *s = opaque;
trace_ecc_diag_mem_writeb(addr, val);
s->diag[addr & ECC_DIAG_MASK] = val;
}
static uint32_t ecc_diag_mem_readb(void *opaque, target_phys_addr_t addr)
{
ECCState *s = opaque;
uint32_t ret = s->diag[(int)addr];
trace_ecc_diag_mem_readb(addr, ret);
return ret;
}
static CPUReadMemoryFunc * const ecc_diag_mem_read[3] = {
ecc_diag_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc * const ecc_diag_mem_write[3] = {
ecc_diag_mem_writeb,
NULL,
NULL,
};
static const VMStateDescription vmstate_ecc = {
.name ="ECC",
.version_id = 3,
.minimum_version_id = 3,
.minimum_version_id_old = 3,
.fields = (VMStateField []) {
VMSTATE_UINT32_ARRAY(regs, ECCState, ECC_NREGS),
VMSTATE_BUFFER(diag, ECCState),
VMSTATE_UINT32(version, ECCState),
VMSTATE_END_OF_LIST()
}
};
static void ecc_reset(DeviceState *d)
{
ECCState *s = container_of(d, ECCState, busdev.qdev);
if (s->version == ECC_MCC)
s->regs[ECC_MER] &= ECC_MER_REU;
else
s->regs[ECC_MER] &= (ECC_MER_VER | ECC_MER_IMPL | ECC_MER_MRR |
ECC_MER_DCI);
s->regs[ECC_MDR] = 0x20;
s->regs[ECC_MFSR] = 0;
s->regs[ECC_VCR] = 0;
s->regs[ECC_MFAR0] = 0x07c00000;
s->regs[ECC_MFAR1] = 0;
s->regs[ECC_DR] = 0;
s->regs[ECC_ECR0] = 0;
s->regs[ECC_ECR1] = 0;
}
static int ecc_init1(SysBusDevice *dev)
{
int ecc_io_memory;
ECCState *s = FROM_SYSBUS(ECCState, dev);
sysbus_init_irq(dev, &s->irq);
s->regs[0] = s->version;
ecc_io_memory = cpu_register_io_memory(ecc_mem_read, ecc_mem_write, s,
DEVICE_NATIVE_ENDIAN);
sysbus_init_mmio(dev, ECC_SIZE, ecc_io_memory);
if (s->version == ECC_MCC) { // SS-600MP only
ecc_io_memory = cpu_register_io_memory(ecc_diag_mem_read,
ecc_diag_mem_write, s,
DEVICE_NATIVE_ENDIAN);
sysbus_init_mmio(dev, ECC_DIAG_SIZE, ecc_io_memory);
}
return 0;
}
static SysBusDeviceInfo ecc_info = {
.init = ecc_init1,
.qdev.name = "eccmemctl",
.qdev.size = sizeof(ECCState),
.qdev.vmsd = &vmstate_ecc,
.qdev.reset = ecc_reset,
.qdev.props = (Property[]) {
DEFINE_PROP_HEX32("version", ECCState, version, -1),
DEFINE_PROP_END_OF_LIST(),
}
};
static void ecc_register_devices(void)
{
sysbus_register_withprop(&ecc_info);
}
device_init(ecc_register_devices)