qemu-patch-raspberry4/target/hexagon/macros.h
Taylor Simpson 8872533671 Hexagon (target/hexagon) cleanup gen_store_conditional[48] functions
Previously the store-conditional code was writing to hex_pred[prednum].
Then, the fGEN_TCG override was reading from there to the destination
variable so that the packet commit logic would handle it properly.

The correct implementation is to write to the destination variable
and don't have the extra read in the override.

Remove the unused arguments from gen_store_conditional[48]

Signed-off-by: Taylor Simpson <tsimpson@quicinc.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <1622589584-22571-4-git-send-email-tsimpson@quicinc.com>
2021-06-29 11:32:50 -05:00

699 lines
24 KiB
C

/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HEXAGON_MACROS_H
#define HEXAGON_MACROS_H
#include "cpu.h"
#include "hex_regs.h"
#include "reg_fields.h"
#ifdef QEMU_GENERATE
#define READ_REG(dest, NUM) gen_read_reg(dest, NUM)
#else
#define READ_REG(NUM) (env->gpr[(NUM)])
#define READ_PREG(NUM) (env->pred[NUM])
#define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot)
#define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL)
#endif
#define PCALIGN 4
#define PCALIGN_MASK (PCALIGN - 1)
#define GET_FIELD(FIELD, REGIN) \
fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
reg_field_info[FIELD].offset)
#ifdef QEMU_GENERATE
#define GET_USR_FIELD(FIELD, DST) \
tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
reg_field_info[FIELD].offset, \
reg_field_info[FIELD].width)
#define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int)
#define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv)
#define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64)
#define SET_USR_FIELD_FUNC(X) \
__builtin_choose_expr(TYPE_INT(X), \
gen_set_usr_fieldi, \
__builtin_choose_expr(TYPE_TCGV(X), \
gen_set_usr_field, (void)0))
#define SET_USR_FIELD(FIELD, VAL) \
SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
#else
#define GET_USR_FIELD(FIELD) \
fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
reg_field_info[FIELD].offset)
#define SET_USR_FIELD(FIELD, VAL) \
fINSERT_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
reg_field_info[FIELD].offset, (VAL))
#endif
#ifdef QEMU_GENERATE
/*
* Section 5.5 of the Hexagon V67 Programmer's Reference Manual
*
* Slot 1 store with slot 0 load
* A slot 1 store operation with a slot 0 load operation can appear in a packet.
* The packet attribute :mem_noshuf inhibits the instruction reordering that
* would otherwise be done by the assembler. For example:
* {
* memw(R5) = R2 // slot 1 store
* R3 = memh(R6) // slot 0 load
* }:mem_noshuf
* Unlike most packetized operations, these memory operations are not executed
* in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
* effectively executes first, followed by the load instruction in Slot 0. If
* the addresses of the two operations are overlapping, the load will receive
* the newly stored data. This feature is supported in processor versions
* V65 or greater.
*
*
* For qemu, we look for a load in slot 0 when there is a store in slot 1
* in the same packet. When we see this, we call a helper that merges the
* bytes from the store buffer with the value loaded from memory.
*/
#define CHECK_NOSHUF \
do { \
if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
process_store(ctx, pkt, 1); \
} \
} while (0)
#define MEM_LOAD1s(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD1u(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD2s(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD2u(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD4s(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD4u(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_LOAD8u(DST, VA) \
do { \
CHECK_NOSHUF; \
tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
} while (0)
#define MEM_STORE1_FUNC(X) \
__builtin_choose_expr(TYPE_INT(X), \
gen_store1i, \
__builtin_choose_expr(TYPE_TCGV(X), \
gen_store1, (void)0))
#define MEM_STORE1(VA, DATA, SLOT) \
MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
#define MEM_STORE2_FUNC(X) \
__builtin_choose_expr(TYPE_INT(X), \
gen_store2i, \
__builtin_choose_expr(TYPE_TCGV(X), \
gen_store2, (void)0))
#define MEM_STORE2(VA, DATA, SLOT) \
MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
#define MEM_STORE4_FUNC(X) \
__builtin_choose_expr(TYPE_INT(X), \
gen_store4i, \
__builtin_choose_expr(TYPE_TCGV(X), \
gen_store4, (void)0))
#define MEM_STORE4(VA, DATA, SLOT) \
MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
#define MEM_STORE8_FUNC(X) \
__builtin_choose_expr(TYPE_INT(X), \
gen_store8i, \
__builtin_choose_expr(TYPE_TCGV_I64(X), \
gen_store8, (void)0))
#define MEM_STORE8(VA, DATA, SLOT) \
MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
#else
#define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
#define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
#define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
#define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
#define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
#define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
#define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
#define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
#define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
#define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
#define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
#define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
#endif
#define CANCEL cancel_slot(env, slot)
#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
#ifdef QEMU_GENERATE
static inline void gen_pred_cancel(TCGv pred, int slot_num)
{
TCGv slot_mask = tcg_const_tl(1 << slot_num);
TCGv tmp = tcg_temp_new();
TCGv zero = tcg_const_tl(0);
TCGv one = tcg_const_tl(1);
tcg_gen_or_tl(slot_mask, hex_slot_cancelled, slot_mask);
tcg_gen_andi_tl(tmp, pred, 1);
tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
slot_mask, hex_slot_cancelled);
tcg_temp_free(slot_mask);
tcg_temp_free(tmp);
tcg_temp_free(zero);
tcg_temp_free(one);
}
#define PRED_LOAD_CANCEL(PRED, EA) \
gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
#endif
#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
#define fMIN(A, B) (((A) < (B)) ? (A) : (B))
#define fABS(A) (((A) < 0) ? (-(A)) : (A))
#define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
#define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
#define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
(fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
#define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
(((HIBIT) - (LOWBIT) + 1) ? \
extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
0LL)
#define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
do { \
int width = ((HIBIT) - (LOWBIT) + 1); \
INREG = (width >= 0 ? \
deposit64((INREG), (LOWBIT), width, (INVAL)) : \
INREG); \
} while (0)
#define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
#ifdef QEMU_GENERATE
#define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
#else
#define fLSBOLD(VAL) ((VAL) & 1)
#endif
#ifdef QEMU_GENERATE
#define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1)
#define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
#define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
#else
#define fLSBNEW(PVAL) ((PVAL) & 1)
#define fLSBNEW0 (env->new_pred_value[0] & 1)
#define fLSBNEW1 (env->new_pred_value[1] & 1)
#endif
#ifdef QEMU_GENERATE
#define fLSBOLDNOT(VAL) \
do { \
tcg_gen_andi_tl(LSB, (VAL), 1); \
tcg_gen_xori_tl(LSB, LSB, 1); \
} while (0)
#define fLSBNEWNOT(PNUM) \
do { \
tcg_gen_andi_tl(LSB, (PNUM), 1); \
tcg_gen_xori_tl(LSB, LSB, 1); \
} while (0)
#else
#define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
#define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
#define fLSBNEW0NOT (!fLSBNEW0)
#define fLSBNEW1NOT (!fLSBNEW1)
#endif
#define fNEWREG(VAL) ((int32_t)(VAL))
#define fNEWREG_ST(VAL) (VAL)
#define fSATUVALN(N, VAL) \
({ \
fSET_OVERFLOW(); \
((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
})
#define fSATVALN(N, VAL) \
({ \
fSET_OVERFLOW(); \
((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
})
#define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
#define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
#define fSATN(N, VAL) \
((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
#define fADDSAT64(DST, A, B) \
do { \
uint64_t __a = fCAST8u(A); \
uint64_t __b = fCAST8u(B); \
uint64_t __sum = __a + __b; \
uint64_t __xor = __a ^ __b; \
const uint64_t __mask = 0x8000000000000000ULL; \
if (__xor & __mask) { \
DST = __sum; \
} \
else if ((__a ^ __sum) & __mask) { \
if (__sum & __mask) { \
DST = 0x7FFFFFFFFFFFFFFFLL; \
fSET_OVERFLOW(); \
} else { \
DST = 0x8000000000000000LL; \
fSET_OVERFLOW(); \
} \
} else { \
DST = __sum; \
} \
} while (0)
#define fSATUN(N, VAL) \
((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
#define fSATH(VAL) (fSATN(16, VAL))
#define fSATUH(VAL) (fSATUN(16, VAL))
#define fSATUB(VAL) (fSATUN(8, VAL))
#define fSATB(VAL) (fSATN(8, VAL))
#define fIMMEXT(IMM) (IMM = IMM)
#define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
#define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
#ifdef QEMU_GENERATE
static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
{
/*
* Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
*
* The "I" value from a modifier register is divided into two pieces
* LSB bits 23:17
* MSB bits 31:28
* The value is signed
*
* At the end we shift the result according to the shift argument
*/
TCGv msb = tcg_temp_new();
TCGv lsb = tcg_temp_new();
tcg_gen_extract_tl(lsb, val, 17, 7);
tcg_gen_sari_tl(msb, val, 21);
tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
tcg_gen_shli_tl(result, result, shift);
tcg_temp_free(msb);
tcg_temp_free(lsb);
return result;
}
#define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
#else
#define fREAD_IREG(VAL) \
(fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
#endif
#define fREAD_LR() (READ_REG(HEX_REG_LR))
#define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
#define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
#define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
#define fREAD_SP() (READ_REG(HEX_REG_SP))
#define fREAD_LC0 (READ_REG(HEX_REG_LC0))
#define fREAD_LC1 (READ_REG(HEX_REG_LC1))
#define fREAD_SA0 (READ_REG(HEX_REG_SA0))
#define fREAD_SA1 (READ_REG(HEX_REG_SA1))
#define fREAD_FP() (READ_REG(HEX_REG_FP))
#ifdef FIXME
/* Figure out how to get insn->extension_valid to helper */
#define fREAD_GP() \
(insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
#else
#define fREAD_GP() READ_REG(HEX_REG_GP)
#endif
#define fREAD_PC() (READ_REG(HEX_REG_PC))
#define fREAD_NPC() (env->next_PC & (0xfffffffe))
#define fREAD_P0() (READ_PREG(0))
#define fREAD_P3() (READ_PREG(3))
#define fCHECK_PCALIGN(A)
#define fWRITE_NPC(A) write_new_pc(env, A)
#define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
#define fHINTJR(TARGET) { /* Not modelled in qemu */}
#define fCALL(A) \
do { \
fWRITE_LR(fREAD_NPC()); \
fBRANCH(A, COF_TYPE_CALL); \
} while (0)
#define fCALLR(A) \
do { \
fWRITE_LR(fREAD_NPC()); \
fBRANCH(A, COF_TYPE_CALLR); \
} while (0)
#define fWRITE_LOOP_REGS0(START, COUNT) \
do { \
WRITE_RREG(HEX_REG_LC0, COUNT); \
WRITE_RREG(HEX_REG_SA0, START); \
} while (0)
#define fWRITE_LOOP_REGS1(START, COUNT) \
do { \
WRITE_RREG(HEX_REG_LC1, COUNT); \
WRITE_RREG(HEX_REG_SA1, START);\
} while (0)
#define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
#define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
#define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
#define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
#define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
#define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
#define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
#define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
#define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
#define fPART1(WORK) if (part1) { WORK; return; }
#define fCAST4u(A) ((uint32_t)(A))
#define fCAST4s(A) ((int32_t)(A))
#define fCAST8u(A) ((uint64_t)(A))
#define fCAST8s(A) ((int64_t)(A))
#define fCAST4_4s(A) ((int32_t)(A))
#define fCAST4_4u(A) ((uint32_t)(A))
#define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
#define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
#define fCAST8_8s(A) ((int64_t)(A))
#define fCAST8_8u(A) ((uint64_t)(A))
#define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
#define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
#define fZE8_16(A) ((int16_t)((uint8_t)(A)))
#define fSE8_16(A) ((int16_t)((int8_t)(A)))
#define fSE16_32(A) ((int32_t)((int16_t)(A)))
#define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
#define fSE32_64(A) ((int64_t)((int32_t)(A)))
#define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
#define fSE8_32(A) ((int32_t)((int8_t)(A)))
#define fZE8_32(A) ((int32_t)((uint8_t)(A)))
#define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
#define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
#define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
#define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
#define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
#define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
#define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
#define fMPY16US(A, B) fMPY16SU(B, A)
#define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
#define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
#define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
#define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
#define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
#define fROUND(A) (A + 0x8000)
#define fCLIP(DST, SRC, U) \
do { \
int32_t maxv = (1 << U) - 1; \
int32_t minv = -(1 << U); \
DST = fMIN(maxv, fMAX(SRC, minv)); \
} while (0)
#define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
#define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
#define fCRNDN(A, N) (conv_round(A, N))
#define fADD128(A, B) (int128_add(A, B))
#define fSUB128(A, B) (int128_sub(A, B))
#define fSHIFTR128(A, B) (int128_rshift(A, B))
#define fSHIFTL128(A, B) (int128_lshift(A, B))
#define fAND128(A, B) (int128_and(A, B))
#define fCAST8S_16S(A) (int128_exts64(A))
#define fCAST16S_8S(A) (int128_getlo(A))
#ifdef QEMU_GENERATE
#define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
#define fEA_RRs(REG, REG2, SCALE) \
do { \
TCGv tmp = tcg_temp_new(); \
tcg_gen_shli_tl(tmp, REG2, SCALE); \
tcg_gen_add_tl(EA, REG, tmp); \
tcg_temp_free(tmp); \
} while (0)
#define fEA_IRs(IMM, REG, SCALE) \
do { \
tcg_gen_shli_tl(EA, REG, SCALE); \
tcg_gen_addi_tl(EA, EA, IMM); \
} while (0)
#else
#define fEA_RI(REG, IMM) \
do { \
EA = REG + IMM; \
} while (0)
#define fEA_RRs(REG, REG2, SCALE) \
do { \
EA = REG + (REG2 << SCALE); \
} while (0)
#define fEA_IRs(IMM, REG, SCALE) \
do { \
EA = IMM + (REG << SCALE); \
} while (0)
#endif
#ifdef QEMU_GENERATE
#define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
#define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
#define fEA_BREVR(REG) gen_helper_fbrev(EA, REG)
#define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM)
#define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL)
#define fPM_CIRI(REG, IMM, MVAL) \
do { \
TCGv tcgv_siV = tcg_const_tl(siV); \
gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
hex_gpr[HEX_REG_CS0 + MuN]); \
tcg_temp_free(tcgv_siV); \
} while (0)
#else
#define fEA_IMM(IMM) do { EA = (IMM); } while (0)
#define fEA_REG(REG) do { EA = (REG); } while (0)
#define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0)
#define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0)
#define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0)
#endif
#define fSCALE(N, A) (((int64_t)(A)) << N)
#define fSATW(A) fSATN(32, ((long long)A))
#define fSAT(A) fSATN(32, (A))
#define fSAT_ORIG_SHL(A, ORIG_REG) \
((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
? fSATVALN(32, ((int32_t)(ORIG_REG))) \
: ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
: fSAT(A)))
#define fPASS(A) A
#define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
(((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
: (fCAST##REGSTYPE(SRC) << (SHAMT)))
#define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
#define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
#define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
(((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
: fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
#define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
(((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
: (fCAST##REGSTYPE(SRC) >> (SHAMT)))
#define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
#define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
#define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
(((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
<< ((-(SHAMT)) - 1)) << 1, (SRC)) \
: (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
#define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
#define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
(((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
#define fROTL(SRC, SHAMT, REGSTYPE) \
(((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
((fCAST##REGSTYPE##u(SRC) >> \
((sizeof(SRC) * 8) - (SHAMT))))))
#define fROTR(SRC, SHAMT, REGSTYPE) \
(((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
((fCAST##REGSTYPE##u(SRC) << \
((sizeof(SRC) * 8) - (SHAMT))))))
#define fASHIFTL(SRC, SHAMT, REGSTYPE) \
(((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
#ifdef QEMU_GENERATE
#define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
#else
#define fLOAD(NUM, SIZE, SIGN, EA, DST) \
DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
#endif
#define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
#define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
#define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
#define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
#ifdef CONFIG_USER_ONLY
#define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
#else
/* System mode not implemented yet */
#define fFRAMECHECK(ADDR, EA) g_assert_not_reached();
#endif
#ifdef QEMU_GENERATE
#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
#endif
#ifdef QEMU_GENERATE
#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
#else
#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
#endif
#ifdef QEMU_GENERATE
#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
#endif
#ifdef QEMU_GENERATE
#define GETBYTE_FUNC(X) \
__builtin_choose_expr(TYPE_TCGV(X), \
gen_get_byte, \
__builtin_choose_expr(TYPE_TCGV_I64(X), \
gen_get_byte_i64, (void)0))
#define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
#define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
#else
#define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
#define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
#endif
#define fSETBYTE(N, DST, VAL) \
do { \
DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
(((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
} while (0)
#ifdef QEMU_GENERATE
#define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true)
#define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
#else
#define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
#define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
#endif
#define fSETHALF(N, DST, VAL) \
do { \
DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
(((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
} while (0)
#define fSETHALFw fSETHALF
#define fSETHALFd fSETHALF
#define fGETWORD(N, SRC) \
((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
#define fGETUWORD(N, SRC) \
((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
#define fSETWORD(N, DST, VAL) \
do { \
DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
(((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
} while (0)
#define fSETBIT(N, DST, VAL) \
do { \
DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
} while (0)
#define fGETBIT(N, SRC) (((SRC) >> N) & 1)
#define fSETBITS(HI, LO, DST, VAL) \
do { \
int j; \
for (j = LO; j <= HI; j++) { \
fSETBIT(j, DST, VAL); \
} \
} while (0)
#define fCOUNTONES_4(VAL) ctpop32(VAL)
#define fCOUNTONES_8(VAL) ctpop64(VAL)
#define fBREV_8(VAL) revbit64(VAL)
#define fBREV_4(VAL) revbit32(VAL)
#define fCL1_8(VAL) clo64(VAL)
#define fCL1_4(VAL) clo32(VAL)
#define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
#define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
#define fHIDE(A) A
#define fCONSTLL(A) A##LL
#define fECHO(A) (A)
#define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
#define fPAUSE(IMM)
#define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
((VAL) << reg_field_info[FIELD].offset)
#define fGET_REG_FIELD_MASK(FIELD) \
(((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
#define fREAD_REG_FIELD(REG, FIELD) \
fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
reg_field_info[FIELD].width, \
reg_field_info[FIELD].offset)
#define fGET_FIELD(VAL, FIELD)
#define fSET_FIELD(VAL, FIELD, NEWVAL)
#define fBARRIER()
#define fSYNCH()
#define fISYNC()
#define fDCFETCH(REG) \
do { (void)REG; } while (0) /* Nothing to do in qemu */
#define fICINVA(REG) \
do { (void)REG; } while (0) /* Nothing to do in qemu */
#define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
#define fDCCLEANA(REG) \
do { (void)REG; } while (0) /* Nothing to do in qemu */
#define fDCCLEANINVA(REG) \
do { (void)REG; } while (0) /* Nothing to do in qemu */
#define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
#define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
STRBITNUM) /* Nothing */
#endif