qemu-patch-raspberry4/hw/riscv/microchip_pfsoc.c
Bin Meng 143897b501 hw/riscv: microchip_pfsoc: Support direct kernel boot
At present the Microchip Icicle Kit machine only supports using
'-bios' to load the HSS, and does not support '-kernel' for direct
kernel booting just like other RISC-V machines do. One has to use
U-Boot which is chain-loaded by HSS, to load a kernel for testing.
This is not so convenient.

Adding '-kernel' support together with the existing '-bios', we
follow the following table to select which payload we execute:

  -bios |    -kernel | payload
  ------+------------+--------
      N |          N | HSS
      Y | don't care | HSS
      N |          Y | kernel

This ensures backwards compatibility with how we used to expose
'-bios' to users. When '-kernel' is used for direct boot, '-dtb'
must be present to provide a valid device tree for the board,
as we don't generate device tree.

When direct kernel boot is used, the OpenSBI fw_dynamic BIOS image
is used to boot a payload like U-Boot or OS kernel directly.

Documentation is updated to describe the direct kernel boot. Note
as of today there is still no PolarFire SoC support in the upstream
Linux kernel hence the document does not include instructions for
that. It will be updated in the future.

Signed-off-by: Bin Meng <bin.meng@windriver.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20210430071302.1489082-8-bmeng.cn@gmail.com
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2021-06-08 09:59:42 +10:00

630 lines
26 KiB
C

/*
* QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
*
* Copyright (c) 2020 Wind River Systems, Inc.
*
* Author:
* Bin Meng <bin.meng@windriver.com>
*
* Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
*
* 0) CLINT (Core Level Interruptor)
* 1) PLIC (Platform Level Interrupt Controller)
* 2) eNVM (Embedded Non-Volatile Memory)
* 3) MMUARTs (Multi-Mode UART)
* 4) Cadence eMMC/SDHC controller and an SD card connected to it
* 5) SiFive Platform DMA (Direct Memory Access Controller)
* 6) GEM (Gigabit Ethernet MAC Controller)
* 7) DMC (DDR Memory Controller)
* 8) IOSCB modules
*
* This board currently generates devicetree dynamically that indicates at least
* two harts and up to five harts.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "chardev/char.h"
#include "hw/cpu/cluster.h"
#include "target/riscv/cpu.h"
#include "hw/misc/unimp.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/microchip_pfsoc.h"
#include "hw/intc/sifive_clint.h"
#include "hw/intc/sifive_plic.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
/*
* The BIOS image used by this machine is called Hart Software Services (HSS).
* See https://github.com/polarfire-soc/hart-software-services
*/
#define BIOS_FILENAME "hss.bin"
#define RESET_VECTOR 0x20220000
/* CLINT timebase frequency */
#define CLINT_TIMEBASE_FREQ 1000000
/* GEM version */
#define GEM_REVISION 0x0107010c
/*
* The complete description of the whole PolarFire SoC memory map is scattered
* in different documents. There are several places to look at for memory maps:
*
* 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
* Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
* https://www.microsemi.com/document-portal/doc_download/
* 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
* describes the whole picture of the PolarFire SoC memory map.
*
* 2 A zip file for PolarFire soC memory map, which can be downloaded from
* https://www.microsemi.com/document-portal/doc_download/
* 1244581-polarfire-soc-register-map, contains the following 2 major parts:
* - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
* describes the complete integrated peripherals memory map
* - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
* describes the complete IOSCB modules memory maps
*/
static const MemMapEntry microchip_pfsoc_memmap[] = {
[MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 },
[MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 },
[MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
[MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
[MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
[MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
[MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
[MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
[MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
[MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
[MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
[MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
[MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 },
[MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
[MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 },
[MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
[MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
[MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
[MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
[MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 },
[MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 },
[MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 },
[MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
[MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
[MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
[MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
[MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
[MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
[MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
[MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 },
[MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 },
[MICROCHIP_PFSOC_EMMC_SD_MUX] = { 0x4f000000, 0x4 },
[MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 },
[MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 },
[MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 },
[MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 },
};
static void microchip_pfsoc_soc_instance_init(Object *obj)
{
MachineState *ms = MACHINE(qdev_get_machine());
MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
TYPE_RISCV_HART_ARRAY);
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
TYPE_RISCV_CPU_SIFIVE_E51);
qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
TYPE_RISCV_HART_ARRAY);
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
TYPE_RISCV_CPU_SIFIVE_U54);
qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
object_initialize_child(obj, "dma-controller", &s->dma,
TYPE_SIFIVE_PDMA);
object_initialize_child(obj, "sysreg", &s->sysreg,
TYPE_MCHP_PFSOC_SYSREG);
object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
TYPE_MCHP_PFSOC_DDR_CFG);
object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
object_initialize_child(obj, "sd-controller", &s->sdhci,
TYPE_CADENCE_SDHCI);
object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
}
static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
{
MachineState *ms = MACHINE(qdev_get_machine());
MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
const MemMapEntry *memmap = microchip_pfsoc_memmap;
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
MemoryRegion *envm_data = g_new(MemoryRegion, 1);
MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
char *plic_hart_config;
size_t plic_hart_config_len;
NICInfo *nd;
int i;
sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
/*
* The cluster must be realized after the RISC-V hart array container,
* as the container's CPU object is only created on realize, and the
* CPU must exist and have been parented into the cluster before the
* cluster is realized.
*/
qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
/* Reserved Memory at address 0 */
memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_RSVD0].base,
rsvd0_mem);
/* E51 DTIM */
memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_E51_DTIM].base,
e51_dtim_mem);
/* Bus Error Units */
create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
/* CLINT */
sifive_clint_create(memmap[MICROCHIP_PFSOC_CLINT].base,
memmap[MICROCHIP_PFSOC_CLINT].size, 0, ms->smp.cpus,
SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
CLINT_TIMEBASE_FREQ, false);
/* L2 cache controller */
create_unimplemented_device("microchip.pfsoc.l2cc",
memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
/*
* Add L2-LIM at reset size.
* This should be reduced in size as the L2 Cache Controller WayEnable
* register is incremented. Unfortunately I don't see a nice (or any) way
* to handle reducing or blocking out the L2 LIM while still allowing it
* be re returned to all enabled after a reset. For the time being, just
* leave it enabled all the time. This won't break anything, but will be
* too generous to misbehaving guests.
*/
memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_L2LIM].base,
l2lim_mem);
/* create PLIC hart topology configuration string */
plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) *
ms->smp.cpus;
plic_hart_config = g_malloc0(plic_hart_config_len);
for (i = 0; i < ms->smp.cpus; i++) {
if (i != 0) {
strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG,
plic_hart_config_len);
} else {
strncat(plic_hart_config, "M", plic_hart_config_len);
}
plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1);
}
/* PLIC */
s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
plic_hart_config, 0,
MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
MICROCHIP_PFSOC_PLIC_PENDING_BASE,
MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
memmap[MICROCHIP_PFSOC_PLIC].size);
g_free(plic_hart_config);
/* DMA */
sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
memmap[MICROCHIP_PFSOC_DMA].base);
for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
qdev_get_gpio_in(DEVICE(s->plic),
MICROCHIP_PFSOC_DMA_IRQ0 + i));
}
/* SYSREG */
sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
memmap[MICROCHIP_PFSOC_SYSREG].base);
/* MPUCFG */
create_unimplemented_device("microchip.pfsoc.mpucfg",
memmap[MICROCHIP_PFSOC_MPUCFG].base,
memmap[MICROCHIP_PFSOC_MPUCFG].size);
/* DDR SGMII PHY */
sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
/* DDR CFG */
sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
memmap[MICROCHIP_PFSOC_DDR_CFG].base);
/* SDHCI */
sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
memmap[MICROCHIP_PFSOC_EMMC_SD].base);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
/* MMUARTs */
s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART0].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
serial_hd(0));
s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART1].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
serial_hd(1));
s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART2].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
serial_hd(2));
s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART3].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
serial_hd(3));
s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART4].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
serial_hd(4));
/* SPI */
create_unimplemented_device("microchip.pfsoc.spi0",
memmap[MICROCHIP_PFSOC_SPI0].base,
memmap[MICROCHIP_PFSOC_SPI0].size);
create_unimplemented_device("microchip.pfsoc.spi1",
memmap[MICROCHIP_PFSOC_SPI1].base,
memmap[MICROCHIP_PFSOC_SPI1].size);
/* I2C1 */
create_unimplemented_device("microchip.pfsoc.i2c1",
memmap[MICROCHIP_PFSOC_I2C1].base,
memmap[MICROCHIP_PFSOC_I2C1].size);
/* GEMs */
nd = &nd_table[0];
if (nd->used) {
qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
qdev_set_nic_properties(DEVICE(&s->gem0), nd);
}
nd = &nd_table[1];
if (nd->used) {
qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
qdev_set_nic_properties(DEVICE(&s->gem1), nd);
}
object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
memmap[MICROCHIP_PFSOC_GEM0].base);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
memmap[MICROCHIP_PFSOC_GEM1].base);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
/* GPIOs */
create_unimplemented_device("microchip.pfsoc.gpio0",
memmap[MICROCHIP_PFSOC_GPIO0].base,
memmap[MICROCHIP_PFSOC_GPIO0].size);
create_unimplemented_device("microchip.pfsoc.gpio1",
memmap[MICROCHIP_PFSOC_GPIO1].base,
memmap[MICROCHIP_PFSOC_GPIO1].size);
create_unimplemented_device("microchip.pfsoc.gpio2",
memmap[MICROCHIP_PFSOC_GPIO2].base,
memmap[MICROCHIP_PFSOC_GPIO2].size);
/* eNVM */
memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
&error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
envm_data);
/* IOSCB */
sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
memmap[MICROCHIP_PFSOC_IOSCB].base);
/* eMMC/SD mux */
create_unimplemented_device("microchip.pfsoc.emmc_sd_mux",
memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].base,
memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].size);
/* QSPI Flash */
memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
"microchip.pfsoc.qspi_xip",
memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
&error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
qspi_xip_mem);
}
static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = microchip_pfsoc_soc_realize;
/* Reason: Uses serial_hds in realize function, thus can't be used twice */
dc->user_creatable = false;
}
static const TypeInfo microchip_pfsoc_soc_type_info = {
.name = TYPE_MICROCHIP_PFSOC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(MicrochipPFSoCState),
.instance_init = microchip_pfsoc_soc_instance_init,
.class_init = microchip_pfsoc_soc_class_init,
};
static void microchip_pfsoc_soc_register_types(void)
{
type_register_static(&microchip_pfsoc_soc_type_info);
}
type_init(microchip_pfsoc_soc_register_types)
static void microchip_icicle_kit_machine_init(MachineState *machine)
{
MachineClass *mc = MACHINE_GET_CLASS(machine);
const MemMapEntry *memmap = microchip_pfsoc_memmap;
MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *mem_low = g_new(MemoryRegion, 1);
MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
MemoryRegion *mem_high = g_new(MemoryRegion, 1);
MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
uint64_t mem_high_size;
hwaddr firmware_load_addr;
const char *firmware_name;
bool kernel_as_payload = false;
target_ulong firmware_end_addr, kernel_start_addr;
uint64_t kernel_entry;
uint32_t fdt_load_addr;
DriveInfo *dinfo = drive_get_next(IF_SD);
/* Sanity check on RAM size */
if (machine->ram_size < mc->default_ram_size) {
char *sz = size_to_str(mc->default_ram_size);
error_report("Invalid RAM size, should be bigger than %s", sz);
g_free(sz);
exit(EXIT_FAILURE);
}
/* Initialize SoC */
object_initialize_child(OBJECT(machine), "soc", &s->soc,
TYPE_MICROCHIP_PFSOC);
qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
/* Register RAM */
memory_region_init_ram(mem_low, NULL, "microchip.icicle.kit.ram_low",
memmap[MICROCHIP_PFSOC_DRAM_LO].size,
&error_fatal);
memory_region_init_alias(mem_low_alias, NULL,
"microchip.icicle.kit.ram_low.alias",
mem_low, 0,
memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].size);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_DRAM_LO].base,
mem_low);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
mem_low_alias);
mem_high_size = machine->ram_size - 1 * GiB;
memory_region_init_ram(mem_high, NULL, "microchip.icicle.kit.ram_high",
mem_high_size, &error_fatal);
memory_region_init_alias(mem_high_alias, NULL,
"microchip.icicle.kit.ram_high.alias",
mem_high, 0, mem_high_size);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_DRAM_HI].base,
mem_high);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
mem_high_alias);
/* Attach an SD card */
if (dinfo) {
CadenceSDHCIState *sdhci = &(s->soc.sdhci);
DeviceState *card = qdev_new(TYPE_SD_CARD);
qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
&error_fatal);
qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
}
/*
* We follow the following table to select which payload we execute.
*
* -bios | -kernel | payload
* -------+------------+--------
* N | N | HSS
* Y | don't care | HSS
* N | Y | kernel
*
* This ensures backwards compatibility with how we used to expose -bios
* to users but allows them to run through direct kernel booting as well.
*
* When -kernel is used for direct boot, -dtb must be present to provide
* a valid device tree for the board, as we don't generate device tree.
*/
if (machine->kernel_filename && machine->dtb) {
int fdt_size;
machine->fdt = load_device_tree(machine->dtb, &fdt_size);
if (!machine->fdt) {
error_report("load_device_tree() failed");
exit(1);
}
firmware_name = RISCV64_BIOS_BIN;
firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
kernel_as_payload = true;
}
if (!kernel_as_payload) {
firmware_name = BIOS_FILENAME;
firmware_load_addr = RESET_VECTOR;
}
/* Load the firmware */
firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
firmware_load_addr, NULL);
if (kernel_as_payload) {
kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
firmware_end_addr);
kernel_entry = riscv_load_kernel(machine->kernel_filename,
kernel_start_addr, NULL);
if (machine->initrd_filename) {
hwaddr start;
hwaddr end = riscv_load_initrd(machine->initrd_filename,
machine->ram_size, kernel_entry,
&start);
qemu_fdt_setprop_cell(machine->fdt, "/chosen",
"linux,initrd-start", start);
qemu_fdt_setprop_cell(machine->fdt, "/chosen",
"linux,initrd-end", end);
}
if (machine->kernel_cmdline) {
qemu_fdt_setprop_string(machine->fdt, "/chosen",
"bootargs", machine->kernel_cmdline);
}
/* Compute the fdt load address in dram */
fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
machine->ram_size, machine->fdt);
/* Load the reset vector */
riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
kernel_entry, fdt_load_addr, machine->fdt);
}
}
static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Microchip PolarFire SoC Icicle Kit";
mc->init = microchip_icicle_kit_machine_init;
mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
mc->default_cpus = mc->min_cpus;
/*
* Map 513 MiB high memory, the mimimum required high memory size, because
* HSS will do memory test against the high memory address range regardless
* of physical memory installed.
*
* See memory_tests() in mss_ddr.c in the HSS source code.
*/
mc->default_ram_size = 1537 * MiB;
}
static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
.parent = TYPE_MACHINE,
.class_init = microchip_icicle_kit_machine_class_init,
.instance_size = sizeof(MicrochipIcicleKitState),
};
static void microchip_icicle_kit_machine_init_register_types(void)
{
type_register_static(&microchip_icicle_kit_machine_typeinfo);
}
type_init(microchip_icicle_kit_machine_init_register_types)