qemu-patch-raspberry4/hw/ppc/spapr_cpu_core.c
David Gibson 66d5c492dd pseries: Reset CPU compatibility mode
Currently, the CPU compatibility mode is set when the cpu is initialized,
then again when the guest negotiates features.  This means if a guest
negotiates a compatibility mode, then reboots, that compatibility mode
will be retained across the reset.

Usually that will get overridden when features are negotiated on the next
boot, but it's still not really correct.  This patch moves the initial set
up of the compatibility mode from cpu init to reset time.  The mode *is*
retained if the reboot was caused by the feature negotiation (it might
be important in that case, though it's unlikely).

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Tested-by: Andrea Bolognani <abologna@redhat.com>
2017-06-30 14:03:31 +10:00

344 lines
9.1 KiB
C

/*
* sPAPR CPU core device, acts as container of CPU thread devices.
*
* Copyright (C) 2016 Bharata B Rao <bharata@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "hw/cpu/core.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "target/ppc/cpu.h"
#include "hw/ppc/spapr.h"
#include "hw/boards.h"
#include "qapi/error.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
#include "target/ppc/kvm_ppc.h"
#include "hw/ppc/ppc.h"
#include "target/ppc/mmu-hash64.h"
#include "sysemu/numa.h"
#include "qemu/error-report.h"
void spapr_cpu_parse_features(sPAPRMachineState *spapr)
{
/*
* Backwards compatibility hack:
*
* CPUs had a "compat=" property which didn't make sense for
* anything except pseries. It was replaced by "max-cpu-compat"
* machine option. This supports old command lines like
* -cpu POWER8,compat=power7
* By stripping the compat option and applying it to the machine
* before passing it on to the cpu level parser.
*/
gchar **inpieces;
int i, j;
gchar *compat_str = NULL;
inpieces = g_strsplit(MACHINE(spapr)->cpu_model, ",", 0);
/* inpieces[0] is the actual model string */
i = 1;
j = 1;
while (inpieces[i]) {
if (g_str_has_prefix(inpieces[i], "compat=")) {
/* in case of multiple compat= options */
g_free(compat_str);
compat_str = inpieces[i];
} else {
j++;
}
i++;
/* Excise compat options from list */
inpieces[j] = inpieces[i];
}
if (compat_str) {
char *val = compat_str + strlen("compat=");
gchar *newprops = g_strjoinv(",", inpieces);
object_property_set_str(OBJECT(spapr), val, "max-cpu-compat",
&error_fatal);
ppc_cpu_parse_features(newprops);
g_free(newprops);
} else {
ppc_cpu_parse_features(MACHINE(spapr)->cpu_model);
}
g_strfreev(inpieces);
}
static void spapr_cpu_reset(void *opaque)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
cpu_reset(cs);
/* All CPUs start halted. CPU0 is unhalted from the machine level
* reset code and the rest are explicitly started up by the guest
* using an RTAS call */
cs->halted = 1;
env->spr[SPR_HIOR] = 0;
/*
* This is a hack for the benefit of KVM PR - it abuses the SDR1
* slot in kvm_sregs to communicate the userspace address of the
* HPT
*/
if (kvm_enabled()) {
env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab
| (spapr->htab_shift - 18);
if (kvmppc_put_books_sregs(cpu) < 0) {
error_report("Unable to update SDR1 in KVM");
exit(1);
}
}
}
static void spapr_cpu_destroy(PowerPCCPU *cpu)
{
qemu_unregister_reset(spapr_cpu_reset, cpu);
}
static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu,
Error **errp)
{
CPUPPCState *env = &cpu->env;
/* Set time-base frequency to 512 MHz */
cpu_ppc_tb_init(env, SPAPR_TIMEBASE_FREQ);
/* Enable PAPR mode in TCG or KVM */
cpu_ppc_set_papr(cpu, PPC_VIRTUAL_HYPERVISOR(spapr));
qemu_register_reset(spapr_cpu_reset, cpu);
spapr_cpu_reset(cpu);
}
/*
* Return the sPAPR CPU core type for @model which essentially is the CPU
* model specified with -cpu cmdline option.
*/
char *spapr_get_cpu_core_type(const char *model)
{
char *core_type;
gchar **model_pieces = g_strsplit(model, ",", 2);
core_type = g_strdup_printf("%s-%s", model_pieces[0], TYPE_SPAPR_CPU_CORE);
/* Check whether it exists or whether we have to look up an alias name */
if (!object_class_by_name(core_type)) {
const char *realmodel;
g_free(core_type);
core_type = NULL;
realmodel = ppc_cpu_lookup_alias(model_pieces[0]);
if (realmodel) {
core_type = spapr_get_cpu_core_type(realmodel);
}
}
g_strfreev(model_pieces);
return core_type;
}
static void spapr_cpu_core_unrealizefn(DeviceState *dev, Error **errp)
{
sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(dev));
const char *typename = object_class_get_name(scc->cpu_class);
size_t size = object_type_get_instance_size(typename);
CPUCore *cc = CPU_CORE(dev);
int i;
for (i = 0; i < cc->nr_threads; i++) {
void *obj = sc->threads + i * size;
DeviceState *dev = DEVICE(obj);
CPUState *cs = CPU(dev);
PowerPCCPU *cpu = POWERPC_CPU(cs);
spapr_cpu_destroy(cpu);
object_unparent(cpu->intc);
cpu_remove_sync(cs);
object_unparent(obj);
}
g_free(sc->threads);
}
static void spapr_cpu_core_realize_child(Object *child, Error **errp)
{
Error *local_err = NULL;
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
CPUState *cs = CPU(child);
PowerPCCPU *cpu = POWERPC_CPU(cs);
Object *obj = NULL;
object_property_set_bool(child, true, "realized", &local_err);
if (local_err) {
goto error;
}
spapr_cpu_init(spapr, cpu, &local_err);
if (local_err) {
goto error;
}
obj = object_new(spapr->icp_type);
object_property_add_child(child, "icp", obj, &error_abort);
object_unref(obj);
object_property_add_const_link(obj, ICP_PROP_XICS, OBJECT(spapr),
&error_abort);
object_property_add_const_link(obj, ICP_PROP_CPU, child, &error_abort);
object_property_set_bool(obj, true, "realized", &local_err);
if (local_err) {
goto error;
}
return;
error:
object_unparent(obj);
error_propagate(errp, local_err);
}
static void spapr_cpu_core_realize(DeviceState *dev, Error **errp)
{
sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(dev));
CPUCore *cc = CPU_CORE(OBJECT(dev));
const char *typename = object_class_get_name(scc->cpu_class);
size_t size = object_type_get_instance_size(typename);
Error *local_err = NULL;
void *obj;
int i, j;
sc->threads = g_malloc0(size * cc->nr_threads);
for (i = 0; i < cc->nr_threads; i++) {
char id[32];
CPUState *cs;
PowerPCCPU *cpu;
obj = sc->threads + i * size;
object_initialize(obj, size, typename);
cs = CPU(obj);
cpu = POWERPC_CPU(cs);
cs->cpu_index = cc->core_id + i;
/* Set NUMA node for the threads belonged to core */
cpu->node_id = sc->node_id;
snprintf(id, sizeof(id), "thread[%d]", i);
object_property_add_child(OBJECT(sc), id, obj, &local_err);
if (local_err) {
goto err;
}
object_unref(obj);
}
for (j = 0; j < cc->nr_threads; j++) {
obj = sc->threads + j * size;
spapr_cpu_core_realize_child(obj, &local_err);
if (local_err) {
goto err;
}
}
return;
err:
while (--i >= 0) {
obj = sc->threads + i * size;
object_unparent(obj);
}
g_free(sc->threads);
error_propagate(errp, local_err);
}
static const char *spapr_core_models[] = {
/* 970 */
"970_v2.2",
/* 970MP variants */
"970MP_v1.0",
"970mp_v1.0",
"970MP_v1.1",
"970mp_v1.1",
/* POWER5+ */
"POWER5+_v2.1",
/* POWER7 */
"POWER7_v2.3",
/* POWER7+ */
"POWER7+_v2.1",
/* POWER8 */
"POWER8_v2.0",
/* POWER8E */
"POWER8E_v2.1",
/* POWER8NVL */
"POWER8NVL_v1.0",
/* POWER9 */
"POWER9_v1.0",
};
static Property spapr_cpu_core_properties[] = {
DEFINE_PROP_INT32("node-id", sPAPRCPUCore, node_id, CPU_UNSET_NUMA_NODE_ID),
DEFINE_PROP_END_OF_LIST()
};
void spapr_cpu_core_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_CLASS(oc);
dc->realize = spapr_cpu_core_realize;
dc->unrealize = spapr_cpu_core_unrealizefn;
dc->props = spapr_cpu_core_properties;
scc->cpu_class = cpu_class_by_name(TYPE_POWERPC_CPU, data);
g_assert(scc->cpu_class);
}
static const TypeInfo spapr_cpu_core_type_info = {
.name = TYPE_SPAPR_CPU_CORE,
.parent = TYPE_CPU_CORE,
.abstract = true,
.instance_size = sizeof(sPAPRCPUCore),
.class_size = sizeof(sPAPRCPUCoreClass),
};
static void spapr_cpu_core_register_types(void)
{
int i;
type_register_static(&spapr_cpu_core_type_info);
for (i = 0; i < ARRAY_SIZE(spapr_core_models); i++) {
TypeInfo type_info = {
.parent = TYPE_SPAPR_CPU_CORE,
.instance_size = sizeof(sPAPRCPUCore),
.class_init = spapr_cpu_core_class_init,
.class_data = (void *) spapr_core_models[i],
};
type_info.name = g_strdup_printf("%s-" TYPE_SPAPR_CPU_CORE,
spapr_core_models[i]);
type_register(&type_info);
g_free((void *)type_info.name);
}
}
type_init(spapr_cpu_core_register_types)