/* SoX Resampler Library Copyright (c) 2007-16 robs@users.sourceforge.net * Licence for this file: LGPL v2.1 See LICENCE for details. * * Constant-rate resampling common code. */ #include #include #include #include #include "filter.h" #if defined SOXR_LIB #include "internal.h" #define STATIC #endif #include "cr.h" #define num_coefs4 ((core_flags&CORE_SIMD_POLY)? ((num_coefs+3)&~3) : num_coefs) #define coef_coef(C,T,x) \ C((T*)result, interp_order, num_coefs4, j, x, num_coefs4 - 1 - i) #define STORE(C,T) { \ if (interp_order > 2) coef_coef(C,T,3) = (T)d; \ if (interp_order > 1) coef_coef(C,T,2) = (T)c; \ if (interp_order > 0) coef_coef(C,T,1) = (T)b; \ coef_coef(C,T,0) = (T)f0;} static real * prepare_poly_fir_coefs(double const * coefs, int num_coefs, int num_phases, int interp_order, double multiplier, core_flags_t core_flags, alloc_t const * mem) { int i, j, length = num_coefs4 * num_phases * (interp_order + 1); real * result = mem->calloc(1,(size_t)length << LOG2_SIZEOF_REAL(core_flags)); double fm1 = coefs[0], f1 = 0, f2 = 0; for (i = num_coefs - 1; i >= 0; --i) for (j = num_phases - 1; j >= 0; --j) { double f0 = fm1, b = 0, c = 0, d = 0; /* = 0 to kill compiler warning */ int pos = i * num_phases + j - 1; fm1 = pos > 0 ? coefs[pos - 1] * multiplier : 0; switch (interp_order) { case 1: b = f1 - f0; break; case 2: b = f1 - (.5 * (f2+f0) - f1) - f0; c = .5 * (f2+f0) - f1; break; case 3: c=.5*(f1+fm1)-f0;d=(1/6.)*(f2-f1+fm1-f0-4*c);b=f1-f0-d-c; break; default: assert(!interp_order); } switch (core_flags & 3) { case 0: if (WITH_CR32 ) STORE(coef , float ); break; case 1: if (WITH_CR64 ) STORE(coef , double); break; case 2: if (WITH_CR32S) STORE(coef4, float ); break; default:if (WITH_CR64S) STORE(coef4, double); break; } f2 = f1, f1 = f0; } return result; } #undef STORE #undef coef_coef #define IS_FLOAT32 (WITH_CR32 || WITH_CR32S) && \ (!(WITH_CR64 || WITH_CR64S) || sizeof_real == sizeof(float)) #define WITH_FLOAT64 WITH_CR64 || WITH_CR64S static void dft_stage_fn(stage_t * p, fifo_t * output_fifo) { real * output, * dft_out; int i, j, num_in = max(0, fifo_occupancy(&p->fifo)); rate_shared_t const * s = p->shared; dft_filter_t const * f = &s->dft_filter[p->dft_filter_num]; int const overlap = f->num_taps - 1; if (p->at.integer + p->L * num_in >= f->dft_length) { fn_t const * const RDFT_CB = p->rdft_cb; size_t const sizeof_real = sizeof(char) << LOG2_SIZEOF_REAL(p->core_flags); div_t divd = div(f->dft_length - overlap - p->at.integer + p->L - 1, p->L); real const * input = fifo_read_ptr(&p->fifo); fifo_read(&p->fifo, divd.quot, NULL); num_in -= divd.quot; output = fifo_reserve(output_fifo, f->dft_length); dft_out = (p->core_flags & CORE_SIMD_DFT)? p->dft_out : output; if (lsx_is_power_of_2(p->L)) { /* F-domain */ int portion = f->dft_length / p->L; memcpy(dft_out, input, (unsigned)portion * sizeof_real); rdft_oforward(portion, f->dft_forward_setup, dft_out, p->dft_scratch); if (IS_FLOAT32) { #define dft_out ((float *)dft_out) for (i = portion + 2; i < (portion << 1); i += 2) /* Mirror image. */ dft_out[i] = dft_out[(portion << 1) - i], dft_out[i+1] = -dft_out[(portion << 1) - i + 1]; dft_out[portion] = dft_out[1]; dft_out[portion + 1] = 0; dft_out[1] = dft_out[0]; #undef dft_out } else if (WITH_FLOAT64) { #define dft_out ((double *)dft_out) for (i = portion + 2; i < (portion << 1); i += 2) /* Mirror image. */ dft_out[i] = dft_out[(portion << 1) - i], dft_out[i+1] = -dft_out[(portion << 1) - i + 1]; dft_out[portion] = dft_out[1]; dft_out[portion + 1] = 0; dft_out[1] = dft_out[0]; #undef dft_out } for (portion <<= 1; i < f->dft_length; i += portion, portion <<= 1) { memcpy((char *)dft_out + (size_t)i * sizeof_real, dft_out, (size_t)portion * sizeof_real); ((char *)dft_out)[((size_t)i + 1) * sizeof_real] = 0; } if (p->step.integer > 0) rdft_reorder_back(f->dft_length, f->dft_backward_setup, dft_out, p->dft_scratch); } else { if (p->L == 1) memcpy(dft_out, input, (size_t)f->dft_length * sizeof_real); else { memset(dft_out, 0, (size_t)f->dft_length * sizeof_real); if (IS_FLOAT32) for (j = 0, i = p->at.integer; i < f->dft_length; ++j, i += p->L) ((float *)dft_out)[i] = ((float *)input)[j]; else if (WITH_FLOAT64) for (j = 0, i = p->at.integer; i < f->dft_length; ++j, i += p->L) ((double *)dft_out)[i] = ((double *)input)[j]; p->at.integer = p->L - 1 - divd.rem; } if (p->step.integer > 0) rdft_forward(f->dft_length, f->dft_forward_setup, dft_out, p->dft_scratch); else rdft_oforward(f->dft_length, f->dft_forward_setup, dft_out, p->dft_scratch); } if (p->step.integer > 0) { rdft_convolve(f->dft_length, f->dft_backward_setup, dft_out, f->coefs); rdft_backward(f->dft_length, f->dft_backward_setup, dft_out, p->dft_scratch); if ((p->core_flags & CORE_SIMD_DFT) && p->step.integer == 1) memcpy(output, dft_out, (size_t)f->dft_length * sizeof_real); if (p->step.integer != 1) { if (IS_FLOAT32) for (j = 0, i = p->remM; i < f->dft_length - overlap; ++j, i += p->step.integer) ((float *)output)[j] = ((float *)dft_out)[i]; else if (WITH_FLOAT64) for (j = 0, i = p->remM; i < f->dft_length - overlap; ++j, i += p->step.integer) ((double *)output)[j] = ((double *)dft_out)[i]; p->remM = i - (f->dft_length - overlap); fifo_trim_by(output_fifo, f->dft_length - j); } else fifo_trim_by(output_fifo, overlap); } else { /* F-domain */ int m = -p->step.integer; rdft_convolve_portion(f->dft_length >> m, dft_out, f->coefs); rdft_obackward(f->dft_length >> m, f->dft_backward_setup, dft_out, p->dft_scratch); if (p->core_flags & CORE_SIMD_DFT) memcpy(output, dft_out, (size_t)(f->dft_length >> m) * sizeof_real); fifo_trim_by(output_fifo, (((1 << m) - 1) * f->dft_length + overlap) >>m); } (void)RDFT_CB; } p->input_size = (f->dft_length - p->at.integer + p->L - 1) / p->L; } /* Set to 4 x nearest power of 2 or half of that */ /* if danger of causing too many cache misses. */ static int set_dft_length(int num_taps, int min, int large) { double d = log((double)num_taps) / log(2.); return 1 << range_limit((int)(d + 2.77), min, max((int)(d + 1.77), large)); } static void dft_stage_init( unsigned instance, double Fp, double Fs, double Fn, double att, double phase_response, stage_t * p, int L, int M, double * multiplier, unsigned min_dft_size, unsigned large_dft_size, core_flags_t core_flags, fn_t const * RDFT_CB) { dft_filter_t * f = &p->shared->dft_filter[instance]; int num_taps = 0, dft_length = f->dft_length, i, offset; bool f_domain_m = abs(3-M) == 1 && Fs <= 1; size_t const sizeof_real = sizeof(char) << LOG2_SIZEOF_REAL(core_flags); if (!dft_length) { int k = phase_response == 50 && lsx_is_power_of_2(L) && Fn == L? L << 1 : 4; double m, * h = lsx_design_lpf(Fp, Fs, Fn, att, &num_taps, -k, -1.); if (phase_response != 50) lsx_fir_to_phase(&h, &num_taps, &f->post_peak, phase_response); else f->post_peak = num_taps / 2; dft_length = set_dft_length(num_taps, (int)min_dft_size, (int)large_dft_size); f->coefs = rdft_calloc((size_t)dft_length, sizeof_real); offset = dft_length - num_taps + 1; m = (1. / dft_length) * rdft_multiplier() * L * *multiplier; if (IS_FLOAT32) for (i = 0; i < num_taps; ++i) ((float *)f->coefs)[(i + offset) & (dft_length - 1)] =(float)(h[i] * m); else if (WITH_FLOAT64) for (i = 0; i < num_taps; ++i) ((double *)f->coefs)[(i + offset) & (dft_length - 1)] = h[i] * m; free(h); } if (rdft_flags() & RDFT_IS_SIMD) p->dft_out = rdft_malloc(sizeof_real * (size_t)dft_length); if (rdft_flags() & RDFT_NEEDS_SCRATCH) p->dft_scratch = rdft_malloc(2 * sizeof_real * (size_t)dft_length); if (!f->dft_length) { void * coef_setup = rdft_forward_setup(dft_length); int Lp = lsx_is_power_of_2(L)? L : 1; int Mp = f_domain_m? M : 1; f->dft_forward_setup = rdft_forward_setup(dft_length / Lp); f->dft_backward_setup = rdft_backward_setup(dft_length / Mp); if (Mp == 1) rdft_forward(dft_length, coef_setup, f->coefs, p->dft_scratch); else rdft_oforward(dft_length, coef_setup, f->coefs, p->dft_scratch); rdft_delete_setup(coef_setup); f->num_taps = num_taps; f->dft_length = dft_length; lsx_debug("fir_len=%i dft_length=%i Fp=%g Fs=%g Fn=%g att=%g %i/%i", num_taps, dft_length, Fp, Fs, Fn, att, L, M); } *multiplier = 1; p->out_in_ratio = (double)L / M; p->core_flags = core_flags; p->rdft_cb = RDFT_CB; p->fn = dft_stage_fn; p->preload = f->post_peak / L; p->at.integer = f->post_peak % L; p->L = L; p->step.integer = f_domain_m? -M/2 : M; p->dft_filter_num = instance; p->block_len = f->dft_length - (f->num_taps - 1); p->phase0 = p->at.integer / p->L; p->input_size = (f->dft_length - p->at.integer + p->L - 1) / p->L; } static struct half_fir_info const * find_half_fir( struct half_fir_info const * firs, size_t len, double att) { size_t i; for (i = 0; i + 1 < len && att > firs[i].att; ++i); return &firs[i]; } #define have_pre_stage (preM * preL != 1) #define have_arb_stage (arbM * arbL != 1) #define have_post_stage (postM * postL != 1) #include "soxr.h" STATIC char const * _soxr_init( rate_t * const p, /* Per audio channel. */ rate_shared_t * const shared, /* By channels undergoing same rate change. */ double const io_ratio, /* Input rate divided by output rate. */ soxr_quality_spec_t const * const q_spec, soxr_runtime_spec_t const * const r_spec, double multiplier, /* Linear gain to apply during conversion. */ cr_core_t const * const core, core_flags_t const core_flags) { size_t const sizeof_real = sizeof(char) << LOG2_SIZEOF_REAL(core_flags); double const tolerance = 1 + 1e-5; double bits = q_spec->precision; rolloff_t const rolloff = (rolloff_t)(q_spec->flags & 3); int interpolator = (int)(r_spec->flags & 3) - 1; double const Fp0 = q_spec->passband_end, Fs0 = q_spec->stopband_begin; double const phase_response = q_spec->phase_response, tbw0 = Fs0-Fp0; bool const maintain_3dB_pt = !!(q_spec->flags & SOXR_MAINTAIN_3DB_PT); double tbw_tighten = 1, alpha; #define tighten(x) (Fs0-(Fs0-(x))*tbw_tighten) double arbM = io_ratio, Fn1, Fp1 = Fp0, Fs1 = Fs0, bits1 = min(bits,33); double att = (bits1 + 1) * linear_to_dB(2.), attArb = att; /* +1: pass+stop */ int preL = 1, preM = 1, shr = 0, arbL = 1, postL = 1, postM = 1; bool upsample=false, rational=false, iOpt=!(r_spec->flags&SOXR_NOSMALLINTOPT); bool lq_bits= (q_spec->flags & SOXR_PROMOTE_TO_LQ)? bits <= 16 : bits == 16; bool lq_Fp0 = (q_spec->flags & SOXR_PROMOTE_TO_LQ)? Fp0<=lq_bw0 : Fp0==lq_bw0; int n = 0, i, mode = lq_bits && rolloff == rolloff_medium? io_ratio > 1 || phase_response != 50 || !lq_Fp0 || Fs0 != 1 : ((int)ceil(bits1) - 6) / 4; struct half_fir_info const * half_fir_info; stage_t * s; if (io_ratio < 1 && Fs0 - 1 > 1 - Fp0 / tolerance) return "imaging greater than rolloff"; if (.002 / tolerance > tbw0 || tbw0 > .5 * tolerance) return "transition bandwidth not in [0.2,50] % of nyquist"; if (.5 / tolerance > Fp0 || Fs0 > 1.5 * tolerance) return "transition band not within [50,150] % of nyquist"; if (bits!=0 && (15 > bits || bits > 33)) return "precision not in [15,33] bits"; if (io_ratio <= 0) return "resampling factor not positive"; if (0 > phase_response || phase_response > 100) return "phase response not in [0=min-phase,100=max-phase] %"; p->core = core; p->io_ratio = io_ratio; if (bits!=0) while (!n++) { /* Determine stages: */ int try, L, M, x, maxL = interpolator > 0? 1 : mode? 2048 : (int)ceil(r_spec->coef_size_kbytes * 1000. / (U100_l * (int)sizeof_real)); double d, epsilon = 0, frac; upsample = arbM < 1; for (i = (int)(.5 * arbM), shr = 0; i >>= 1; arbM *= .5, ++shr); preM = upsample || (arbM > 1.5 && arbM < 2); postM = 1 + (arbM > 1 && preM), arbM /= postM; preL = 1 + (!preM && arbM < 2) + (upsample && mode), arbM *= preL; if ((frac = arbM - (int)arbM)!=0) epsilon = fabs(floor(frac * MULT32 + .5) / (frac * MULT32) - 1); for (i = 1, rational = frac==0; i <= maxL && !rational; ++i) { d = frac * i, try = (int)(d + .5); if ((rational = fabs(try / d - 1) <= epsilon)) { /* No long doubles! */ if (try == i) arbM = ceil(arbM), shr += x = arbM > 3, arbM /= 1 + x; else arbM = i * (int)arbM + try, arbL = i; } } L = preL * arbL, M = (int)(arbM * postM), x = (L|M)&1, L >>= !x, M >>= !x; if (iOpt && postL == 1 && (d = preL * arbL / arbM) > 4 && d != 5) { for (postL = 4, i = (int)(d / 16); (i >>= 1) && postL < 256; postL <<= 1); arbM = arbM * postL / arbL / preL, arbL = 1, n = 0; } else if (rational && (max(L, M) < 3 + 2 * iOpt || L * M < 6 * iOpt)) preL = L, preM = M, arbM = arbL = postM = 1; if (!mode && (!rational || !n)) ++mode, n = 0; } p->num_stages = shr + have_pre_stage + have_arb_stage + have_post_stage; if (!p->num_stages && multiplier != 1) { bits = arbL = 0; /* Use cubic_stage in this case. */ ++p->num_stages; } p->stages = calloc((size_t)p->num_stages + 1, sizeof(*p->stages)); if (!p->stages) return "out of memory"; for (i = 0; i < p->num_stages; ++i) { p->stages[i].num = i; p->stages[i].shared = shared; p->stages[i].input_size = 8192; } p->stages[0].is_input = true; alpha = postM / (io_ratio * (postL << 0)); if ((n = p->num_stages) > 1) { /* Att. budget: */ if (have_arb_stage) att += linear_to_dB(2.), attArb = att, --n; att += linear_to_dB((double)n); } half_fir_info = find_half_fir(core->half_firs, core->half_firs_len, att); for (i = 0, s = p->stages; i < shr; ++i, ++s) { s->fn = half_fir_info->fn; s->coefs = half_fir_info->coefs; s->n = half_fir_info->num_coefs; s->pre_post = 4 * s->n; s->preload = s->pre = s->pre_post >> 1; } if (have_pre_stage) { if (maintain_3dB_pt && have_post_stage) { /* Trans. bands overlapping. */ double x = tbw0 * lsx_inv_f_resp(-3., att); x = -lsx_f_resp(x / (max(2 * alpha - Fs0, alpha) - Fp0), att); if (x > .035) { tbw_tighten = ((4.3074e-3 - 3.9121e-4 * x) * x - .040009) * x + 1.0014; lsx_debug("tbw_tighten=%g (%gdB)", tbw_tighten, x); } } Fn1 = preM? max(preL, preM) : arbM / arbL; dft_stage_init(0, tighten(Fp1), Fs1, Fn1, att, phase_response, s++, preL, max(preM, 1), &multiplier, r_spec->log2_min_dft_size, r_spec->log2_large_dft_size, core_flags, core->rdft_cb); Fp1 /= Fn1, Fs1 /= Fn1; } if (bits==0 && have_arb_stage) { /* `Quick' cubic arb stage: */ s->fn = core->cubic_stage_fn; s->mult = multiplier, multiplier = 1; s->step.whole = (int64_t)(arbM * MULT32 + .5); s->pre_post = max(3, s->step.integer); s->preload = s->pre = 1; s->out_in_ratio = MULT32 / (double)s->step.whole; } else if (have_arb_stage) { /* Higher quality arb stage: */ static const float rolloffs[] = {-.01f, -.3f, 0, -.103f}; poly_fir_t const * f = &core->poly_firs[6*(upsample+!!preM)+mode-!upsample]; int order, num_coefs = (int)f->interp[0].scalar, phase_bits, phases; size_t coefs_size; double at, Fp = Fp1, Fs, Fn, mult = upsample? 1 : arbM / arbL; poly_fir1_t const * f1; if (!upsample && preM) Fn = 2 * mult, Fs = 3 + fabs(Fs1 - 1); else Fn = 1, Fs = 2 - (mode? Fp1 + (Fs1 - Fp1) * .7 : Fs1); if (mode) Fp = Fs - (Fs - Fp) / (1 - lsx_inv_f_resp(rolloffs[rolloff], attArb)); i = (interpolator < 0? !rational : max(interpolator, !rational)) - 1; do { f1 = &f->interp[++i]; assert(f1->fn); if (i) arbM /= arbL, arbL = 1, rational = false; phase_bits = (int)ceil(f1->scalar - log(mult)/log(2.)); phases = !rational? (1 << phase_bits) : arbL; if (f->interp[0].scalar==0) { int phases0 = max(phases, 19), n0 = 0; lsx_design_lpf(Fp, Fs, -Fn, attArb, &n0, phases0, f->beta); num_coefs = n0 / phases0 + 1, num_coefs += num_coefs & !preM; } if ((num_coefs & 1) && rational && (arbL & 1)) phases <<= 1, arbL <<= 1, arbM *= 2; at = arbL * (s->phase0 = .5 * (num_coefs & 1)); order = i + (i && mode > 4); coefs_size = (size_t)(num_coefs4 * phases * (order+1)) * sizeof_real; } while (interpolator < 0 && i < 2 && f->interp[i+1].fn && coefs_size / 1000 > r_spec->coef_size_kbytes); if (!s->shared->poly_fir_coefs) { int num_taps = num_coefs * phases - 1; double * coefs = lsx_design_lpf( Fp, Fs, Fn, attArb, &num_taps, phases, f->beta); s->shared->poly_fir_coefs = prepare_poly_fir_coefs( coefs, num_coefs, phases, order, multiplier, core_flags, &core->mem); lsx_debug("fir_len=%i phases=%i coef_interp=%i size=%.3gk", num_coefs, phases, order, (double)coefs_size / 1000.); free(coefs); } multiplier = 1; s->fn = f1->fn; s->pre_post = num_coefs4 - 1; s->preload = ((num_coefs - 1) >> 1) + (num_coefs4 - num_coefs); s->n = num_coefs4; s->phase_bits = phase_bits; s->L = arbL; s->use_hi_prec_clock = mode>1 && (q_spec->flags & SOXR_HI_PREC_CLOCK) && !rational; #if WITH_FLOAT_STD_PREC_CLOCK if (order && !s->use_hi_prec_clock) { s->at.flt = at; s->step.flt = arbM; s->out_in_ratio = (double)(arbL / s->step.flt); } else #endif { s->at.whole = (int64_t)(at * MULT32 + .5); #if WITH_HI_PREC_CLOCK if (s->use_hi_prec_clock) { double M = arbM * MULT32; s->at.fix.ls.parts.ms = 0x80000000ul; s->step.whole = (int64_t)M; M -= (double)s->step.whole; M *= MULT32 * MULT32; s->step.fix.ls.all = (uint64_t)M; } else #endif s->step.whole = (int64_t)(arbM * MULT32 + .5); s->out_in_ratio = MULT32 * arbL / (double)s->step.whole; } ++s; } if (have_post_stage) dft_stage_init(1, tighten(Fp0 / (upsample? alpha : 1)), upsample? max(2 - Fs0 / alpha, 1) : Fs0, (double)max(postL, postM), att, phase_response, s++, postL, postM, &multiplier, r_spec->log2_min_dft_size, r_spec->log2_large_dft_size, core_flags, core->rdft_cb); lsx_debug("%g: >>%i %i/%i %i/%g %i/%i (%x)", 1/io_ratio, shr, preL, preM, arbL, arbM, postL, postM, core_flags); for (i = 0, s = p->stages; i < p->num_stages; ++i, ++s) { fifo_create(&s->fifo, (int)sizeof_real); memset(fifo_reserve(&s->fifo, s->preload), 0, sizeof_real * (size_t)s->preload); lsx_debug_more("%5i|%-5i preload=%i remL=%i", s->pre, s->pre_post-s->pre, s->preload, s->at.integer); } fifo_create(&s->fifo, (int)sizeof_real); return 0; } static bool stage_process(stage_t * stage, bool flushing) { fifo_t * fifo = &stage->fifo; bool done = false; int want; while (!done && (want = stage->input_size - fifo_occupancy(fifo)) > 0) { if (stage->is_input) { if (flushing) memset(fifo_reserve(fifo, want), 0, fifo->item_size * (size_t)want); else done = true; } else done = stage_process(stage - 1, flushing); } stage->fn(stage, &stage[1].fifo); return done && fifo_occupancy(fifo) < stage->input_size; } STATIC void _soxr_process(rate_t * p, size_t olen) { int const n = p->flushing? min(-(int)p->samples_out, (int)olen) : (int)olen; stage_t * stage = &p->stages[p->num_stages]; fifo_t * fifo = &stage->fifo; bool done = false; while (!done && fifo_occupancy(fifo) < (int)n) done = stage->is_input || stage_process(stage - 1, p->flushing); } STATIC real * _soxr_input(rate_t * p, real const * samples, size_t n) { if (p->flushing) return 0; p->samples_in += (int64_t)n; return fifo_write(&p->stages[0].fifo, (int)n, samples); } STATIC real const * _soxr_output(rate_t * p, real * samples, size_t * n0) { fifo_t * fifo = &p->stages[p->num_stages].fifo; int n = p->flushing? min(-(int)p->samples_out, (int)*n0) : (int)*n0; p->samples_out += n = min(n, fifo_occupancy(fifo)); return fifo_read(fifo, (int)(*n0 = (size_t)n), samples); } STATIC void _soxr_flush(rate_t * p) { if (p->flushing) return; p->samples_out -= (int64_t)((double)p->samples_in / p->io_ratio + .5); p->samples_in = 0; p->flushing = true; } STATIC void _soxr_close(rate_t * p) { if (p->stages) { fn_t const * const RDFT_CB = p->core->rdft_cb; rate_shared_t * shared = p->stages[0].shared; int i; for (i = 0; i <= p->num_stages; ++i) { stage_t * s = &p->stages[i]; rdft_free(s->dft_scratch); rdft_free(s->dft_out); fifo_delete(&s->fifo); } if (shared) { for (i = 0; i < 2; ++i) { dft_filter_t * f= &shared->dft_filter[i]; rdft_free(f->coefs); rdft_delete_setup(f->dft_forward_setup); rdft_delete_setup(f->dft_backward_setup); } p->core->mem.free(shared->poly_fir_coefs); memset(shared, 0, sizeof(*shared)); } free(p->stages); (void)RDFT_CB; } } #if defined SOXR_LIB STATIC double _soxr_delay(rate_t * p) { return (double)p->samples_in / p->io_ratio - (double)p->samples_out; } STATIC void _soxr_sizes(size_t * shared, size_t * channel) { *shared = sizeof(rate_shared_t); *channel = sizeof(rate_t); } #endif