ggml-alloc : allocate all leafs as if they were inputs (ggml/731)

* ggml-alloc : allocate all leafs as if they were inputs

* ensure static leafs are allocated

* gpt-2-backend : remove unnecesary ggml_new_tensor

* update other gpt-2 examples to remove ggml_new_tensor calls in the graph
pull/1860/head
slaren 2024-02-12 18:07:14 +01:00 committed by Georgi Gerganov
parent 551529290d
commit 52c529eeb1
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
1 changed files with 66 additions and 36 deletions

View File

@ -377,6 +377,9 @@ struct ggml_gallocr {
struct node_alloc * node_allocs; // [n_nodes]
int n_nodes;
struct tensor_alloc * leaf_allocs; // [n_leafs]
int n_leafs;
};
ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) {
@ -427,6 +430,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
free(galloc->buffers);
free(galloc->buf_tallocs);
free(galloc->node_allocs);
free(galloc->leaf_allocs);
free(galloc);
}
@ -544,22 +548,8 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node));
// allocate all graph inputs first to avoid overwriting them
for (int i = 0; i < graph->n_nodes; i++) {
if (graph->nodes[i]->flags & GGML_TENSOR_FLAG_INPUT) {
ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (graph->nodes[i]->src[j] == NULL) {
break;
}
if (graph->nodes[i]->src[j]->flags & GGML_TENSOR_FLAG_INPUT) {
ggml_gallocr_allocate_node(galloc, graph->nodes[i]->src[j], get_node_buffer_id(node_buffer_ids, i));
}
}
}
// count number of children and views
// allocate all graph inputs and leafs first to avoid overwriting them
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
@ -568,14 +558,37 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
}
if (node->flags & GGML_TENSOR_FLAG_INPUT) {
ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
struct ggml_tensor * src = node->src[j];
if (src == NULL) {
break;
}
ggml_gallocr_hash_get(galloc, parent)->n_children += 1;
ggml_gallocr_hash_get(galloc, src)->n_children += 1;
// allocate explicit inputs and leafs
if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) {
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
}
}
}
}
// allocate the remaining leafs that are unused on the graph
// these are effectively static tensors that the application is not using in the graph, but may still want to allocate for other purposes
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
if (hn->n_children == 0) {
assert(!hn->allocated);
// since buffer ids are only given for nodes, these leafs are always allocated in the first buffer
ggml_gallocr_allocate_node(galloc, leaf, 0);
}
}
// allocate tensors
for (int i = 0; i < graph->n_nodes; i++) {
@ -696,6 +709,18 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
}
}
if (galloc->n_leafs < graph->n_leafs) {
free(galloc->leaf_allocs);
galloc->leaf_allocs = calloc(sizeof(struct tensor_alloc), graph->n_leafs);
GGML_ASSERT(galloc->leaf_allocs != NULL);
}
galloc->n_leafs = graph->n_leafs;
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
galloc->leaf_allocs[i].offset = hn->offset;
galloc->leaf_allocs[i].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
}
// reallocate buffers if needed
for (int i = 0; i < galloc->n_buffers; i++) {
@ -722,8 +747,8 @@ bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
return ggml_gallocr_reserve_n(galloc, graph, NULL);
}
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * node_alloc, struct tensor_alloc * tensor_alloc) {
assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[node_alloc->buffer_id], node) <= tensor_alloc->size_max);
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, struct tensor_alloc * tensor_alloc) {
assert(node->data || node->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
if (node->view_src != NULL) {
if (node->buffer == NULL) {
@ -732,29 +757,20 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
// this tensor was allocated without ggml-backend
return;
}
ggml_backend_view_init(galloc->buffers[node_alloc->buffer_id], node);
ggml_backend_view_init(galloc->buffers[buffer_id], node);
}
} else {
if (node->data == NULL) {
assert(tensor_alloc->offset != SIZE_MAX);
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[node_alloc->buffer_id], node) <= tensor_alloc->size_max);
void * base = ggml_backend_buffer_get_base(galloc->buffers[node_alloc->buffer_id]);
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], node) <= tensor_alloc->size_max);
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
void * addr = (char *)base + tensor_alloc->offset;
ggml_backend_tensor_alloc(galloc->buffers[node_alloc->buffer_id], node, addr);
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], node, addr);
} else {
if (node->buffer == NULL) {
// this tensor was allocated without ggml-backend
return;
}
#ifndef NDEBUG
size_t offset =
(char *)node->data -
(char *)ggml_backend_buffer_get_base(node->buffer);
size_t size = ggml_backend_buffer_get_alloc_size(node->buffer, node);
assert(tensor_alloc->offset == SIZE_MAX || offset == tensor_alloc->offset);
assert(tensor_alloc->offset == SIZE_MAX || size <= tensor_alloc->size_max);
#endif
}
}
}
@ -773,6 +789,13 @@ static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph
return true;
}
if (galloc->n_leafs != graph->n_leafs) {
#ifndef NDEBUG
fprintf(stderr, "%s: graph has different number of leafs\n", __func__);
#endif
return true;
}
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
struct node_alloc * node_alloc = &galloc->node_allocs[i];
@ -827,6 +850,7 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
}
// allocate the graph tensors from the previous assignments
// nodes
for (int i = 0; i < graph->n_nodes; i++) {
struct ggml_tensor * node = graph->nodes[i];
struct node_alloc * node_alloc = &galloc->node_allocs[i];
@ -835,9 +859,15 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
if (src == NULL) {
break;
}
ggml_gallocr_init_tensor(galloc, src, node_alloc, &node_alloc->src[j]);
ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]);
}
ggml_gallocr_init_tensor(galloc, node, node_alloc, &node_alloc->dst);
ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst);
}
// leafs
for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i];
struct tensor_alloc * leaf_alloc = &galloc->leaf_allocs[i];
ggml_gallocr_init_tensor(galloc, leaf, 0, leaf_alloc);
}
return true;