#include "ggml-alloc.h" #include "ggml-backend-impl.h" #include "ggml.h" #include "ggml-impl.h" #include #include #include #include #include #include #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MAX_FREE_BLOCKS 256 //#define GGML_ALLOCATOR_DEBUG //#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__) #define AT_PRINTF(...) static bool ggml_is_view(const struct ggml_tensor * t) { return t->view_src != NULL; } static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { if (a->type != b->type) { return false; } for (int i = 0; i < GGML_MAX_DIMS; i++) { if (a->ne[i] != b->ne[i]) { return false; } if (a->nb[i] != b->nb[i]) { return false; } } return true; } static bool ggml_op_can_inplace(enum ggml_op op) { switch (op) { case GGML_OP_SCALE: case GGML_OP_DIAG_MASK_ZERO: case GGML_OP_DIAG_MASK_INF: case GGML_OP_ADD: case GGML_OP_ADD1: case GGML_OP_SUB: case GGML_OP_MUL: case GGML_OP_DIV: case GGML_OP_SQR: case GGML_OP_SQRT: case GGML_OP_LOG: case GGML_OP_UNARY: case GGML_OP_ROPE: case GGML_OP_RMS_NORM: case GGML_OP_SOFT_MAX: return true; default: return false; } } static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { assert(alignment && !(alignment & (alignment - 1))); // power of 2 size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; return offset + align; } // tallocr struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) { void * base = ggml_backend_buffer_get_base(buffer); size_t align = ggml_backend_buffer_get_alignment(buffer); assert(align && !(align & (align - 1))); // power of 2 struct ggml_tallocr talloc = (struct ggml_tallocr) { /*.buffer = */ buffer, /*.base = */ base, /*.alignment = */ align, /*.offset = */ aligned_offset(base, 0, align), }; return talloc; } void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) { size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor); size = GGML_PAD(size, talloc->alignment); if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) { fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n", __func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset); GGML_ASSERT(!"not enough space in the buffer"); return; } void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset; talloc->offset += size; assert(((uintptr_t)addr % talloc->alignment) == 0); ggml_backend_tensor_alloc(talloc->buffer, tensor, addr); } // dynamic tensor allocator struct free_block { size_t offset; size_t size; }; struct ggml_dyn_tallocr { size_t alignment; int n_free_blocks; struct free_block free_blocks[MAX_FREE_BLOCKS]; size_t max_size; #ifdef GGML_ALLOCATOR_DEBUG struct { const struct ggml_tensor * tensor; size_t offset; } allocated_tensors[1024]; #endif }; #ifdef GGML_ALLOCATOR_DEBUG static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { for (int i = 0; i < 1024; i++) { if (alloc->allocated_tensors[i].tensor == NULL) { alloc->allocated_tensors[i].tensor = tensor; alloc->allocated_tensors[i].offset = offset; return; } } GGML_ASSERT(!"out of allocated_tensors"); } static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { for (int i = 0; i < 1024; i++) { if (alloc->allocated_tensors[i].offset == offset) { alloc->allocated_tensors[i].tensor = NULL; return; } } fprintf(stderr, "tried to free tensor %s not found\n", tensor->name); GGML_ASSERT(!"tensor not found"); } #endif static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) { size = aligned_offset(NULL, size, alloc->alignment); AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); size_t max_avail = 0; // find the best fitting free block besides the last block int best_fit_block = -1; size_t best_fit_size = SIZE_MAX; for (int i = 0; i < alloc->n_free_blocks - 1; i++) { struct free_block * block = &alloc->free_blocks[i]; max_avail = MAX(max_avail, block->size); if (block->size >= size && block->size <= best_fit_size) { best_fit_block = i; best_fit_size = block->size; } } if (best_fit_block == -1) { // the last block is our last resort struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; max_avail = MAX(max_avail, block->size); if (block->size >= size) { best_fit_block = alloc->n_free_blocks - 1; } else { // this should never happen fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n", __func__, size, max_avail); GGML_ASSERT(!"not enough space in the buffer"); GGML_UNREACHABLE(); } } struct free_block * block = &alloc->free_blocks[best_fit_block]; size_t offset = block->offset; block->offset = offset + size; block->size -= size; if (block->size == 0) { // remove block if empty alloc->n_free_blocks--; for (int j = best_fit_block; j < alloc->n_free_blocks; j++) { alloc->free_blocks[j] = alloc->free_blocks[j+1]; } } AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset); #ifdef GGML_ALLOCATOR_DEBUG add_allocated_tensor(alloc, offset, tensor); size_t cur_max = offset + size; if (cur_max > alloc->max_size) { // sort allocated_tensors by offset for (int i = 0; i < 1024; i++) { for (int j = i + 1; j < 1024; j++) { if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) { const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor; size_t tmp_offset = alloc->allocated_tensors[i].offset; alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor; alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset; alloc->allocated_tensors[j].tensor = tmp_tensor; alloc->allocated_tensors[j].offset = tmp_offset; } } } fprintf(stderr, "max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); for (int i = 0; i < 1024; i++) { if (alloc->allocated_tensors[i].tensor) { fprintf(stderr, "%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name, alloc->allocated_tensors[i].offset, alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor), ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0); } } fprintf(stderr, "\n"); } #endif alloc->max_size = MAX(alloc->max_size, offset + size); return offset; GGML_UNUSED(tensor); } // this is a very naive implementation, but for our case the number of free blocks should be very small static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) { size = aligned_offset(NULL, size, alloc->alignment); AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks); #ifdef GGML_ALLOCATOR_DEBUG remove_allocated_tensor(alloc, offset, tensor); #endif // see if we can merge with an existing block for (int i = 0; i < alloc->n_free_blocks; i++) { struct free_block * block = &alloc->free_blocks[i]; // check if ptr is at the end of the block if (block->offset + block->size == offset) { block->size += size; // check if we can merge with the next block if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) { block->size += alloc->free_blocks[i+1].size; alloc->n_free_blocks--; for (int j = i+1; j < alloc->n_free_blocks; j++) { alloc->free_blocks[j] = alloc->free_blocks[j+1]; } } return; } // check if ptr is at the beginning of the block if (offset + size == block->offset) { block->offset = offset; block->size += size; // check if we can merge with the previous block if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) { alloc->free_blocks[i-1].size += block->size; alloc->n_free_blocks--; for (int j = i; j < alloc->n_free_blocks; j++) { alloc->free_blocks[j] = alloc->free_blocks[j+1]; } } return; } } // otherwise, add a new block GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster) int insert_pos = 0; while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) { insert_pos++; } // shift all blocks from insert_pos onward to make room for the new block for (int i = alloc->n_free_blocks; i > insert_pos; i--) { alloc->free_blocks[i] = alloc->free_blocks[i-1]; } // insert the new block alloc->free_blocks[insert_pos].offset = offset; alloc->free_blocks[insert_pos].size = size; alloc->n_free_blocks++; GGML_UNUSED(tensor); } static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) { alloc->n_free_blocks = 1; alloc->free_blocks[0].offset = 0; alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows alloc->max_size = 0; } static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) { struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr)); *alloc = (struct ggml_dyn_tallocr) { /*.alignment = */ alignment, /*.n_free_blocks = */ 0, /*.free_blocks = */ {{0}}, /*.max_size = */ 0, #ifdef GGML_ALLOCATOR_DEBUG /*.allocated_tensors = */ {{0}}, #endif }; ggml_dyn_tallocr_reset(alloc); return alloc; } static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) { free(alloc); } static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) { return alloc->max_size; } ///////////////////////////////////// // graph allocator struct hash_node { int n_children; int n_views; int buffer_id; size_t offset; // offset within the buffer bool allocated; }; struct tensor_alloc { size_t offset; size_t size_max; // 0 = pre-allocated, unused, or view }; struct leaf_alloc { int buffer_id; struct tensor_alloc leaf; }; struct node_alloc { int buffer_id; struct tensor_alloc dst; struct tensor_alloc src[GGML_MAX_SRC]; }; struct ggml_gallocr { ggml_backend_buffer_type_t * bufts; // [n_buffers] ggml_backend_buffer_t * buffers; // [n_buffers] struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers] int n_buffers; struct ggml_hash_set hash_set; struct hash_node * hash_values; // [hash_set.size] struct node_alloc * node_allocs; // [n_nodes] int n_nodes; struct leaf_alloc * leaf_allocs; // [n_leafs] int n_leafs; }; ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) { ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1); GGML_ASSERT(galloc != NULL); galloc->bufts = calloc(sizeof(ggml_backend_buffer_type_t) * n_bufs, 1); GGML_ASSERT(galloc->bufts != NULL); galloc->buffers = calloc(sizeof(ggml_backend_buffer_t) * n_bufs, 1); GGML_ASSERT(galloc->buffers != NULL); galloc->buf_tallocs = calloc(sizeof(struct ggml_dyn_tallocr *) * n_bufs, 1); GGML_ASSERT(galloc->buf_tallocs != NULL); for (int i = 0; i < n_bufs; i++) { galloc->bufts[i] = bufts[i]; galloc->buffers[i] = NULL; size_t alignment = ggml_backend_buft_get_alignment(bufts[i]); galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment); } galloc->n_buffers = n_bufs; return galloc; } ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) { return ggml_gallocr_new_n(&buft, 1); } void ggml_gallocr_free(ggml_gallocr_t galloc) { if (galloc == NULL) { return; } for (int i = 0; i < galloc->n_buffers; i++) { if (galloc->buffers != NULL) { ggml_backend_buffer_free(galloc->buffers[i]); } if (galloc->buf_tallocs != NULL) { ggml_dyn_tallocr_free(galloc->buf_tallocs[i]); } } free(galloc->hash_set.keys); free(galloc->hash_values); free(galloc->bufts); free(galloc->buffers); free(galloc->buf_tallocs); free(galloc->node_allocs); free(galloc->leaf_allocs); free(galloc); } typedef struct ggml_gallocr * ggml_gallocr_t; static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) { size_t i = ggml_hash_find_or_insert(galloc->hash_set, t); return &galloc->hash_values[i]; } static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) { return ggml_gallocr_hash_get(galloc, t)->allocated; } static void ggml_gallocr_set_node_offset(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, size_t offset) { struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); hn->buffer_id = buffer_id; hn->offset = offset; hn->allocated = true; } static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) { return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated; } static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) { hn->allocated = true; assert(hn->offset == 0); // try to reuse a parent's buffer (inplace) if (ggml_op_can_inplace(node->op)) { for (int i = 0; i < GGML_MAX_SRC; i++) { struct ggml_tensor * parent = node->src[i]; if (parent == NULL) { continue; } // if the node's data is external, then we cannot re-use it if (!ggml_gallocr_is_own(galloc, parent)) { AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); continue; } // outputs cannot be reused if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) { AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name); continue; } if (!ggml_are_same_layout(node, parent)) { AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name); continue; } struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); if (p_hn->n_children == 1 && p_hn->n_views == 0) { if (ggml_is_view(parent)) { struct ggml_tensor * view_src = parent->view_src; struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); assert(view_src_hn->offset == p_hn->offset); hn->buffer_id = p_hn->buffer_id; hn->offset = p_hn->offset; p_hn->allocated = false; // avoid freeing the parent view_src_hn->allocated = false; return; } } else { AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); hn->buffer_id = p_hn->buffer_id; hn->offset = p_hn->offset; p_hn->allocated = false; // avoid freeing the parent return; } } } } // allocate tensor from the buffer struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; size_t size = ggml_backend_buft_get_alloc_size(buft, node); size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node); hn->buffer_id = buffer_id; hn->offset = offset; return; } } static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { // graph outputs are never freed if (node->flags & GGML_TENSOR_FLAG_OUTPUT) { AT_PRINTF("not freeing output %s\n", node->name); return; } struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); size_t offset = hn->offset; size_t size = ggml_backend_buft_get_alloc_size(buft, node); ggml_dyn_tallocr_free_tensor(alloc, offset, size, node); hn->allocated = false; } static int get_node_buffer_id(const int * node_buffer_ids, int i) { return node_buffer_ids ? node_buffer_ids[i] : 0; } static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { // clear hash tables memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *)); memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node)); // allocate leafs // these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes for (int i = 0; i < graph->n_leafs; i++) { struct ggml_tensor * leaf = graph->leafs[i]; ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i)); } // count number of children and views // allocate other graph inputs and leafs first to avoid overwriting them for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; if (ggml_is_view(node)) { struct ggml_tensor * view_src = node->view_src; ggml_gallocr_hash_get(galloc, view_src)->n_views += 1; } if (node->flags & GGML_TENSOR_FLAG_INPUT) { ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i)); } for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { continue; } ggml_gallocr_hash_get(galloc, src)->n_children += 1; // allocate explicit inputs and leafs if (src->flags & GGML_TENSOR_FLAG_INPUT || src->op == GGML_OP_NONE) { ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i)); } } } // allocate tensors for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; int buffer_id = get_node_buffer_id(node_buffer_ids, i); // allocate parents (only leafs need to be allocated at this point) for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { continue; } ggml_gallocr_allocate_node(galloc, parent, buffer_id); } // allocate node ggml_gallocr_allocate_node(galloc, node, buffer_id); AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name); for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { continue; } AT_PRINTF("%s", parent->name); if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { AT_PRINTF(", "); } } AT_PRINTF("\n"); // update parents for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * parent = node->src[j]; if (parent == NULL) { continue; } struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); p_hn->n_children -= 1; AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n", parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated); if (p_hn->n_children == 0 && p_hn->n_views == 0) { if (ggml_is_view(parent)) { struct ggml_tensor * view_src = parent->view_src; struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); view_src_hn->n_views -= 1; AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views); if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) { ggml_gallocr_free_node(galloc, view_src, buffer_id); } } else if (p_hn->allocated) { ggml_gallocr_free_node(galloc, parent, buffer_id); } } AT_PRINTF("\n"); } } } bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { size_t hash_size = graph->visited_hash_table.size; // initialize hash table if (galloc->hash_set.size < hash_size) { free(galloc->hash_set.keys); free(galloc->hash_values); galloc->hash_set.size = hash_size; galloc->hash_set.keys = calloc(sizeof(struct ggml_tensor *), hash_size); galloc->hash_values = calloc(sizeof(struct hash_node), hash_size); GGML_ASSERT(galloc->hash_set.keys != NULL); GGML_ASSERT(galloc->hash_values != NULL); } else { // reset hash table memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size); memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size); } // reset allocators for (int i = 0; i < galloc->n_buffers; i++) { ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]); } // allocate in hash table ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids); // set the node_allocs from the hash table if (galloc->n_nodes < graph->n_nodes) { free(galloc->node_allocs); galloc->node_allocs = calloc(sizeof(struct node_alloc), graph->n_nodes); GGML_ASSERT(galloc->node_allocs != NULL); } galloc->n_nodes = graph->n_nodes; for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; struct node_alloc * node_alloc = &galloc->node_allocs[i]; node_alloc->buffer_id = get_node_buffer_id(node_buffer_ids, i); if (node->view_src || node->data) { node_alloc->dst.offset = SIZE_MAX; node_alloc->dst.size_max = 0; } else { struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); node_alloc->dst.offset = hn->offset; node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node); } for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (!src || src->view_src || src->data) { node_alloc->src[j].offset = SIZE_MAX; node_alloc->src[j].size_max = 0; } else { struct hash_node * hn = ggml_gallocr_hash_get(galloc, src); node_alloc->src[j].offset = hn->offset; node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src); } } } if (galloc->n_leafs < graph->n_leafs) { free(galloc->leaf_allocs); galloc->leaf_allocs = calloc(sizeof(galloc->leaf_allocs[0]), graph->n_leafs); GGML_ASSERT(galloc->leaf_allocs != NULL); } galloc->n_leafs = graph->n_leafs; for (int i = 0; i < graph->n_leafs; i++) { struct ggml_tensor * leaf = graph->leafs[i]; struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf); galloc->leaf_allocs[i].buffer_id = hn->buffer_id; if (leaf->view_src || leaf->data) { galloc->leaf_allocs[i].leaf.offset = SIZE_MAX; galloc->leaf_allocs[i].leaf.size_max = 0; } else { galloc->leaf_allocs[i].leaf.offset = hn->offset; galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf); } } // reallocate buffers if needed for (int i = 0; i < galloc->n_buffers; i++) { size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0; size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]); // even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views if (new_size > cur_size || galloc->buffers[i] == NULL) { #ifndef NDEBUG fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); #endif ggml_backend_buffer_free(galloc->buffers[i]); galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size); if (galloc->buffers[i] == NULL) { fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size); return false; } } } return true; } bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) { return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL); } static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, int buffer_id, struct tensor_alloc * tensor_alloc) { assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max); if (tensor->view_src != NULL) { if (tensor->buffer == NULL) { assert(tensor_alloc->offset == SIZE_MAX); if (tensor->view_src->buffer == NULL) { // this tensor was allocated without ggml-backend return; } ggml_backend_view_init(galloc->buffers[buffer_id], tensor); } } else { if (tensor->data == NULL) { assert(tensor_alloc->offset != SIZE_MAX); assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max); void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]); void * addr = (char *)base + tensor_alloc->offset; ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr); } else { if (tensor->buffer == NULL) { // this tensor was allocated without ggml-backend return; } } } } static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * nalloc, struct tensor_alloc * talloc) { ggml_backend_buffer_type_t buft = galloc->bufts[nalloc->buffer_id]; size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node); return talloc->size_max >= node_size; } static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { if (galloc->n_nodes != graph->n_nodes) { #ifndef NDEBUG fprintf(stderr, "%s: graph has different number of nodes\n", __func__); #endif return true; } if (galloc->n_leafs != graph->n_leafs) { #ifndef NDEBUG fprintf(stderr, "%s: graph has different number of leafs\n", __func__); #endif return true; } for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; struct node_alloc * node_alloc = &galloc->node_allocs[i]; if (!ggml_gallocr_node_needs_realloc(galloc, node, node_alloc, &node_alloc->dst)) { #ifndef NDEBUG fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name); #endif return true; } for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { continue; } if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) { #ifndef NDEBUG fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name); #endif return true; } } } return false; } bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { if (ggml_gallocr_needs_realloc(galloc, graph)) { if (galloc->n_buffers == 1) { #ifndef NDEBUG fprintf(stderr, "%s: reallocating buffers automatically\n", __func__); #endif if (!ggml_gallocr_reserve(galloc, graph)) { return false; } } else { #ifndef NDEBUG fprintf(stderr, "%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__); #endif return false; } } // reset buffers for (int i = 0; i < galloc->n_buffers; i++) { if (galloc->buffers[i] != NULL) { ggml_backend_buffer_reset(galloc->buffers[i]); } } // allocate the graph tensors from the previous assignments // leafs for (int i = 0; i < graph->n_leafs; i++) { struct ggml_tensor * leaf = graph->leafs[i]; struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i]; ggml_gallocr_init_tensor(galloc, leaf, leaf_alloc->buffer_id, &leaf_alloc->leaf); } // nodes for (int i = 0; i < graph->n_nodes; i++) { struct ggml_tensor * node = graph->nodes[i]; struct node_alloc * node_alloc = &galloc->node_allocs[i]; for (int j = 0; j < GGML_MAX_SRC; j++) { struct ggml_tensor * src = node->src[j]; if (src == NULL) { continue; } ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]); } ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst); } return true; } size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) { GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers); if (galloc->buffers[buffer_id] == NULL) { return 0; } return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]); } // utils static bool alloc_tensor_range(struct ggml_context * ctx, struct ggml_tensor * first, struct ggml_tensor * last, ggml_backend_buffer_type_t buft, size_t size, ggml_backend_buffer_t ** buffers, size_t * n_buffers) { ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size); if (buffer == NULL) { #ifndef NDEBUG fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size); #endif for (size_t i = 0; i < *n_buffers; i++) { ggml_backend_buffer_free(*buffers[i]); } free(*buffers); return false; } struct ggml_tallocr tallocr = ggml_tallocr_new(buffer); for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) { if (t->data == NULL) { if (t->view_src == NULL) { ggml_tallocr_alloc(&tallocr, t); } else if (t->buffer == NULL) { ggml_backend_view_init(buffer, t); } } else { if (t->view_src != NULL && t->buffer == NULL) { // view of a pre-allocated tensor ggml_backend_view_init(buffer, t); } } } *buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1)); (*buffers)[(*n_buffers)++] = buffer; return true; } ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) { GGML_ASSERT(ggml_get_no_alloc(ctx) == true); size_t alignment = ggml_backend_buft_get_alignment(buft); size_t max_size = ggml_backend_buft_get_max_size(buft); ggml_backend_buffer_t * buffers = NULL; size_t n_buffers = 0; size_t cur_buf_size = 0; struct ggml_tensor * first = ggml_get_first_tensor(ctx); for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) { size_t this_size = 0; if (t->data == NULL && t->view_src == NULL) { this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment); } if (this_size > max_size) { fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n", __func__, t->name, ggml_backend_buft_name(buft), this_size, max_size); for (size_t i = 0; i < n_buffers; i++) { ggml_backend_buffer_free(buffers[i]); } free(buffers); return NULL; } if ((cur_buf_size + this_size) > max_size) { // allocate tensors in the current buffer if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) { return NULL; } first = t; cur_buf_size = this_size; } else { cur_buf_size += this_size; } } // allocate remaining tensors if (cur_buf_size > 0) { if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) { return NULL; } } if (n_buffers == 0) { #ifndef NDEBUG fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__); #endif return NULL; } ggml_backend_buffer_t buffer; if (n_buffers == 1) { buffer = buffers[0]; } else { buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers); } free(buffers); return buffer; } ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) { return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend)); }