// Voice assistant example // // Speak short text commands to the microphone. // This program will detect your voice command and convert them to text. // // ref: https://github.com/ggerganov/whisper.cpp/issues/171 // #include "whisper.h" #include #include #include #include #include #include #include #include #include #include // command-line parameters struct whisper_params { int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t prompt_ms = 5000; int32_t command_ms = 4000; int32_t capture_id = -1; int32_t max_tokens = 32; int32_t audio_ctx = 0; float vad_thold = 0.6f; float freq_thold = 100.0f; bool speed_up = false; bool translate = false; bool no_context = true; bool print_special = false; bool print_energy = false; bool no_timestamps = true; std::string language = "en"; std::string model = "models/ggml-base.en.bin"; std::string fname_out = ""; }; void whisper_print_usage(int argc, char ** argv, const whisper_params & params); bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { for (int i = 1; i < argc; i++) { std::string arg = argv[i]; if (arg == "-h" || arg == "--help") { whisper_print_usage(argc, argv, params); exit(0); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } else if (arg == "-pms" || arg == "--prompt-ms") { params.prompt_ms = std::stoi(argv[++i]); } else if (arg == "-cms" || arg == "--command-ms") { params.command_ms = std::stoi(argv[++i]); } else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); } else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); } else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); } else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); } else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); } else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; } else if (arg == "-tr" || arg == "--translate") { params.translate = true; } else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; } else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; } else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; } else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; } else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; } else { fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); whisper_print_usage(argc, argv, params); exit(0); } } return true; } void whisper_print_usage(int argc, char ** argv, const whisper_params & params) { fprintf(stderr, "\n"); fprintf(stderr, "usage: %s [options]\n", argv[0]); fprintf(stderr, "\n"); fprintf(stderr, "options:\n"); fprintf(stderr, " -h, --help [default] show this help message and exit\n"); fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads); fprintf(stderr, " -pms N, --prompt-ms N [%-7d] prompt duration in milliseconds\n", params.prompt_ms); fprintf(stderr, " -cms N, --command-ms N [%-7d] command duration in milliseconds\n", params.command_ms); fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id); fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens); fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx); fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold); fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold); fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false"); fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false"); fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false"); fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false"); fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str()); fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str()); fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str()); fprintf(stderr, "\n"); } // // SDL Audio capture // class audio_async { public: audio_async(int len_ms); ~audio_async(); bool init(int capture_id, int sample_rate); // start capturing audio via the provided SDL callback // keep last len_ms seconds of audio in a circular buffer bool resume(); bool pause(); bool clear(); // callback to be called by SDL void callback(uint8_t * stream, int len); // get audio data from the circular buffer void get(int ms, std::vector & audio); private: SDL_AudioDeviceID m_dev_id_in = 0; int m_len_ms = 0; int m_sample_rate = 0; bool m_running = false; std::mutex m_mutex; std::vector m_audio; std::vector m_audio_new; size_t m_audio_pos = 0; size_t m_audio_len = 0; }; audio_async::audio_async(int len_ms) { m_len_ms = len_ms; } audio_async::~audio_async() { if (m_dev_id_in) { SDL_CloseAudioDevice(m_dev_id_in); } } bool audio_async::init(int capture_id, int sample_rate) { SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO); if (SDL_Init(SDL_INIT_AUDIO) < 0) { SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError()); return false; } SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE); { int nDevices = SDL_GetNumAudioDevices(SDL_TRUE); fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices); for (int i = 0; i < nDevices; i++) { fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE)); } } SDL_AudioSpec capture_spec_requested; SDL_AudioSpec capture_spec_obtained; SDL_zero(capture_spec_requested); SDL_zero(capture_spec_obtained); capture_spec_requested.freq = sample_rate; capture_spec_requested.format = AUDIO_F32; capture_spec_requested.channels = 1; capture_spec_requested.samples = 1024; capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) { audio_async * audio = (audio_async *) userdata; audio->callback(stream, len); }; capture_spec_requested.userdata = this; if (capture_id >= 0) { fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE)); m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); } else { fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__); m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0); } if (!m_dev_id_in) { fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError()); m_dev_id_in = 0; return false; } else { fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in); fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq); fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format, capture_spec_requested.format); fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels, capture_spec_requested.channels); fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples); } m_sample_rate = capture_spec_obtained.freq; m_audio.resize((m_sample_rate*m_len_ms)/1000); return true; } bool audio_async::resume() { if (!m_dev_id_in) { fprintf(stderr, "%s: no audio device to resume!\n", __func__); return false; } if (m_running) { fprintf(stderr, "%s: already running!\n", __func__); return false; } SDL_PauseAudioDevice(m_dev_id_in, 0); m_running = true; return true; } bool audio_async::pause() { if (!m_dev_id_in) { fprintf(stderr, "%s: no audio device to pause!\n", __func__); return false; } if (!m_running) { fprintf(stderr, "%s: already paused!\n", __func__); return false; } SDL_PauseAudioDevice(m_dev_id_in, 1); m_running = false; return true; } bool audio_async::clear() { if (!m_dev_id_in) { fprintf(stderr, "%s: no audio device to clear!\n", __func__); return false; } if (!m_running) { fprintf(stderr, "%s: not running!\n", __func__); return false; } { std::lock_guard lock(m_mutex); m_audio_pos = 0; m_audio_len = 0; } return true; } // callback to be called by SDL void audio_async::callback(uint8_t * stream, int len) { if (!m_running) { return; } const size_t n_samples = len / sizeof(float); m_audio_new.resize(n_samples); memcpy(m_audio_new.data(), stream, n_samples * sizeof(float)); //fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len); { std::lock_guard lock(m_mutex); if (m_audio_pos + n_samples > m_audio.size()) { const size_t n0 = m_audio.size() - m_audio_pos; memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float)); memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float)); m_audio_pos = (m_audio_pos + n_samples) % m_audio.size(); m_audio_len = m_audio.size(); } else { memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float)); m_audio_pos = (m_audio_pos + n_samples) % m_audio.size(); m_audio_len = std::min(m_audio_len + n_samples, m_audio.size()); } } } void audio_async::get(int ms, std::vector & result) { if (!m_dev_id_in) { fprintf(stderr, "%s: no audio device to get audio from!\n", __func__); return; } if (!m_running) { fprintf(stderr, "%s: not running!\n", __func__); return; } result.clear(); { std::lock_guard lock(m_mutex); if (ms <= 0) { ms = m_len_ms; } size_t n_samples = (m_sample_rate * ms) / 1000; if (n_samples > m_audio_len) { n_samples = m_audio_len; } result.resize(n_samples); int s0 = m_audio_pos - n_samples; if (s0 < 0) { s0 += m_audio.size(); } if (s0 + n_samples > m_audio.size()) { const size_t n0 = m_audio.size() - s0; memcpy(result.data(), &m_audio[s0], n0 * sizeof(float)); memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float)); } else { memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float)); } } } /////////////////////////// std::string trim(const std::string & s) { std::regex e("^\\s+|\\s+$"); return std::regex_replace(s, e, ""); } void high_pass_filter(std::vector & data, float cutoff, float sample_rate) { const float rc = 1.0f / (2.0f * M_PI * cutoff); const float dt = 1.0f / sample_rate; const float alpha = dt / (rc + dt); float y = data[0]; for (size_t i = 1; i < data.size(); i++) { y = alpha * (y + data[i] - data[i - 1]); data[i] = y; } } bool vad_simple(std::vector & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) { const int n_samples = pcmf32.size(); const int n_samples_last = (sample_rate * last_ms) / 1000; if (n_samples_last >= n_samples) { // not enough samples - assume no speech return false; } if (freq_thold > 0.0f) { high_pass_filter(pcmf32, freq_thold, sample_rate); } float energy_all = 0.0f; float energy_last = 0.0f; for (size_t i = 0; i < n_samples; i++) { energy_all += fabsf(pcmf32[i]); if (i >= n_samples - n_samples_last) { energy_last += fabsf(pcmf32[i]); } } energy_all /= n_samples; energy_last /= n_samples_last; if (verbose) { fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold); } if (energy_last > vad_thold*energy_all) { return false; } return true; } std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector & pcmf32, float & prob, int64_t & t_ms) { const auto t_start = std::chrono::high_resolution_clock::now(); prob = 0.0f; t_ms = 0; whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); wparams.print_progress = false; wparams.print_special = params.print_special; wparams.print_realtime = false; wparams.print_timestamps = !params.no_timestamps; wparams.translate = params.translate; wparams.no_context = true; wparams.single_segment = true; wparams.max_tokens = params.max_tokens; wparams.language = params.language.c_str(); wparams.n_threads = params.n_threads; wparams.audio_ctx = params.audio_ctx; wparams.speed_up = params.speed_up; if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { return ""; } int prob_n = 0; std::string result; const int n_segments = whisper_full_n_segments(ctx); for (int i = 0; i < n_segments; ++i) { const char * text = whisper_full_get_segment_text(ctx, i); result += text; const int n_tokens = whisper_full_n_tokens(ctx, i); for (int j = 0; j < n_tokens; ++j) { const auto token = whisper_full_get_token_data(ctx, i, j); prob += token.p; ++prob_n; } } if (prob_n > 0) { prob /= prob_n; } const auto t_end = std::chrono::high_resolution_clock::now(); t_ms = std::chrono::duration_cast(t_end - t_start).count(); return result; } // compute similarity between two strings using Levenshtein distance float similarity(const std::string & s0, const std::string & s1) { const size_t len0 = s0.size() + 1; const size_t len1 = s1.size() + 1; std::vector col(len1, 0); std::vector prevCol(len1, 0); for (size_t i = 0; i < len1; i++) { prevCol[i] = i; } for (size_t i = 0; i < len0; i++) { col[0] = i; for (size_t j = 1; j < len1; j++) { col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1)); } col.swap(prevCol); } const float dist = prevCol[len1 - 1]; return 1.0f - (dist / std::max(s0.size(), s1.size())); } int main(int argc, char ** argv) { whisper_params params; if (whisper_params_parse(argc, argv, params) == false) { return 1; } if (whisper_lang_id(params.language.c_str()) == -1) { fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); whisper_print_usage(argc, argv, params); exit(0); } // whisper init struct whisper_context * ctx = whisper_init(params.model.c_str()); // print some info about the processing { fprintf(stderr, "\n"); if (!whisper_is_multilingual(ctx)) { if (params.language != "en" || params.translate) { params.language = "en"; params.translate = false; fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); } } fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n", __func__, params.n_threads, params.language.c_str(), params.translate ? "translate" : "transcribe", params.no_timestamps ? 0 : 1); fprintf(stderr, "\n"); } // init audio audio_async audio(30*1000); if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) { fprintf(stderr, "%s: audio.init() failed!\n", __func__); return 1; } audio.resume(); bool is_running = true; bool have_prompt = false; bool ask_prompt = true; float prob0 = 0.0f; float prob = 0.0f; std::vector pcmf32_cur; std::vector pcmf32_prompt; const std::string k_prompt = "Ok Whisper, start listening for commands."; // main loop while (is_running) { // handle Ctrl + C { SDL_Event event; while (SDL_PollEvent(&event)) { switch (event.type) { case SDL_QUIT: { is_running = false; } break; default: break; } } if (!is_running) { break; } } // delay std::this_thread::sleep_for(std::chrono::milliseconds(100)); if (ask_prompt) { fprintf(stdout, "\n"); fprintf(stdout, "%s: Say the following phrase: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m"); fprintf(stdout, "\n"); ask_prompt = false; } int64_t t_ms = 0; { audio.get(2000, pcmf32_cur); if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) { fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__); if (!have_prompt) { audio.get(params.prompt_ms, pcmf32_cur); const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob0, t_ms)); fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms); const float sim = similarity(txt, k_prompt); if (txt.length() < 0.8*k_prompt.length() || txt.length() > 1.2*k_prompt.length() || sim < 0.8f) { fprintf(stdout, "%s: WARNING: prompt not recognized, try again\n", __func__); ask_prompt = true; } else { fprintf(stdout, "\n"); fprintf(stdout, "%s: The prompt has been recognized!\n", __func__); fprintf(stdout, "%s: Waiting for voice commands ...\n", __func__); fprintf(stdout, "\n"); // save the audio for the prompt pcmf32_prompt = pcmf32_cur; have_prompt = true; } } else { audio.get(params.command_ms, pcmf32_cur); // prepend the prompt audio pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end()); const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms)); prob = 100.0f*(prob - prob0); //fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str()); // find the prompt in the text float best_sim = 0.0f; size_t best_len = 0; for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) { const auto prompt = txt.substr(0, n); const float sim = similarity(prompt, k_prompt); //fprintf(stderr, "%s: prompt = '%s', sim = %f\n", __func__, prompt.c_str(), sim); if (sim > best_sim) { best_sim = sim; best_len = n; } } const std::string command = ::trim(txt.substr(best_len)); fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms); fprintf(stdout, "\n"); } audio.clear(); } } } audio.pause(); whisper_print_timings(ctx); whisper_free(ctx); return 0; }