xmrig-nvidia/src/nvidia/cuda_extra.cu

359 lines
12 KiB
Plaintext

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <device_functions.hpp>
#ifdef __CUDACC__
__constant__
#else
const
#endif
uint64_t keccakf_rndc[24] ={
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
0x8000000000008080, 0x0000000080000001, 0x8000000080008008
};
typedef unsigned char BitSequence;
typedef unsigned long long DataLength;
#include "cryptonight.h"
#include "cuda_extra.h"
#include "cuda_keccak.hpp"
#include "cuda_blake.hpp"
#include "cuda_groestl.hpp"
#include "cuda_jh.hpp"
#include "cuda_skein.hpp"
#include "cuda_device.hpp"
__constant__ uint8_t d_sub_byte[16][16] ={
{0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 },
{0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 },
{0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 },
{0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 },
{0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 },
{0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf },
{0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 },
{0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 },
{0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 },
{0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb },
{0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 },
{0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 },
{0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a },
{0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e },
{0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf },
{0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }
};
__device__ __forceinline__ void cryptonight_aes_set_key( uint32_t * __restrict__ key, const uint32_t * __restrict__ data )
{
int i, j;
uint8_t temp[4];
const uint32_t aes_gf[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
MEMSET4( key, 0, 40 );
MEMCPY4( key, data, 8 );
#pragma unroll
for ( i = 8; i < 40; i++ )
{
*(uint32_t *) temp = key[i - 1];
if ( i % 8 == 0 )
{
*(uint32_t *) temp = ROTR32( *(uint32_t *) temp, 8 );
for ( j = 0; j < 4; j++ )
temp[j] = d_sub_byte[( temp[j] >> 4 ) & 0x0f][temp[j] & 0x0f];
*(uint32_t *) temp ^= aes_gf[i / 8 - 1];
}
else
{
if ( i % 8 == 4 )
{
#pragma unroll
for ( j = 0; j < 4; j++ )
temp[j] = d_sub_byte[( temp[j] >> 4 ) & 0x0f][temp[j] & 0x0f];
}
}
key[i] = key[( i - 8 )] ^ *(uint32_t *) temp;
}
}
__global__ void cryptonight_extra_gpu_prepare( int threads, uint32_t * __restrict__ d_input, uint32_t len, uint32_t startNonce, uint32_t * __restrict__ d_ctx_state, uint32_t * __restrict__ d_ctx_a, uint32_t * __restrict__ d_ctx_b, uint32_t * __restrict__ d_ctx_key1, uint32_t * __restrict__ d_ctx_key2 )
{
int thread = ( blockDim.x * blockIdx.x + threadIdx.x );
if ( thread >= threads )
return;
uint32_t ctx_state[50];
uint32_t ctx_a[4];
uint32_t ctx_b[4];
uint32_t ctx_key1[40];
uint32_t ctx_key2[40];
uint32_t input[21];
memcpy( input, d_input, len );
//*((uint32_t *)(((char *)input) + 39)) = startNonce + thread;
uint32_t nonce = startNonce + thread;
for ( int i = 0; i < sizeof (uint32_t ); ++i )
( ( (char *) input ) + 39 )[i] = ( (char*) ( &nonce ) )[i]; //take care of pointer alignment
cn_keccak( (uint8_t *) input, len, (uint8_t *) ctx_state );
cryptonight_aes_set_key( ctx_key1, ctx_state );
cryptonight_aes_set_key( ctx_key2, ctx_state + 8 );
XOR_BLOCKS_DST( ctx_state, ctx_state + 8, ctx_a );
XOR_BLOCKS_DST( ctx_state + 4, ctx_state + 12, ctx_b );
memcpy( d_ctx_state + thread * 50, ctx_state, 50 * 4 );
memcpy( d_ctx_a + thread * 4, ctx_a, 4 * 4 );
memcpy( d_ctx_b + thread * 4, ctx_b, 4 * 4 );
memcpy( d_ctx_key1 + thread * 40, ctx_key1, 40 * 4 );
memcpy( d_ctx_key2 + thread * 40, ctx_key2, 40 * 4 );
}
__global__ void cryptonight_extra_gpu_final( int threads, uint64_t target, uint32_t* __restrict__ d_res_count, uint32_t * __restrict__ d_res_nonce, uint32_t * __restrict__ d_ctx_state )
{
const int thread = blockDim.x * blockIdx.x + threadIdx.x;
if ( thread >= threads )
return;
int i;
uint32_t * __restrict__ ctx_state = d_ctx_state + thread * 50;
uint64_t hash[4];
uint32_t state[50];
#pragma unroll
for ( i = 0; i < 50; i++ )
state[i] = ctx_state[i];
cn_keccakf2( (uint64_t *) state );
switch ( ( (uint8_t *) state )[0] & 0x03 )
{
case 0:
cn_blake( (const uint8_t *) state, 200, (uint8_t *) hash );
break;
case 1:
cn_groestl( (const BitSequence *) state, 200, (BitSequence *) hash );
break;
case 2:
cn_jh( (const BitSequence *) state, 200, (BitSequence *) hash );
break;
case 3:
cn_skein( (const BitSequence *) state, 200, (BitSequence *) hash );
break;
default:
break;
}
// Note that comparison is equivalent to subtraction - we can't just compare 8 32-bit values
// and expect an accurate result for target > 32-bit without implementing carries
if ( hash[3] < target )
{
uint32_t idx = atomicInc( d_res_count, 0xFFFFFFFF );
if(idx < 10)
d_res_nonce[idx] = thread;
}
}
extern "C" void cryptonight_extra_cpu_set_data( nvid_ctx* ctx, const void *data, uint32_t len )
{
ctx->inputlen = len;
cudaMemcpy( ctx->d_input, data, len, cudaMemcpyHostToDevice );
exit_if_cudaerror( ctx->device_id, __FILE__, __LINE__ );
}
extern "C" int cryptonight_extra_cpu_init(nvid_ctx* ctx)
{
cudaError_t err;
err = cudaSetDevice(ctx->device_id);
if(err != cudaSuccess)
{
printf("GPU %d: %s", ctx->device_id, cudaGetErrorString(err));
return 0;
}
cudaDeviceReset();
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
size_t wsize = ctx->device_blocks * ctx->device_threads;
cudaMalloc(&ctx->d_long_state, (size_t)MEMORY * wsize);
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__);
cudaMalloc(&ctx->d_ctx_state, 50 * sizeof(uint32_t) * wsize);
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__);
cudaMalloc(&ctx->d_ctx_key1, 40 * sizeof(uint32_t) * wsize);
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__);
cudaMalloc(&ctx->d_ctx_key2, 40 * sizeof(uint32_t) * wsize);
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__);
cudaMalloc(&ctx->d_ctx_text, 32 * sizeof(uint32_t) * wsize);
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__);
cudaMalloc(&ctx->d_ctx_a, 4 * sizeof(uint32_t) * wsize);
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__);
cudaMalloc(&ctx->d_ctx_b, 4 * sizeof(uint32_t) * wsize);
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__);
cudaMalloc(&ctx->d_input, 21 * sizeof (uint32_t ) );
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__);
cudaMalloc(&ctx->d_result_count, sizeof (uint32_t ) );
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__ );
cudaMalloc(&ctx->d_result_nonce, 10 * sizeof (uint32_t ) );
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__ );
return 1;
}
extern "C" void cryptonight_extra_cpu_prepare(nvid_ctx* ctx, uint32_t startNonce)
{
int threadsperblock = 128;
uint32_t wsize = ctx->device_blocks * ctx->device_threads;
dim3 grid( ( wsize + threadsperblock - 1 ) / threadsperblock );
dim3 block( threadsperblock );
cryptonight_extra_gpu_prepare<<<grid, block >>>( wsize, ctx->d_input, ctx->inputlen, startNonce,
ctx->d_ctx_state, ctx->d_ctx_a, ctx->d_ctx_b, ctx->d_ctx_key1, ctx->d_ctx_key2 );
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__ );
}
extern "C" void cryptonight_extra_cpu_final(nvid_ctx* ctx, uint32_t startNonce, uint64_t target, uint32_t* rescount, uint32_t *resnonce)
{
int threadsperblock = 128;
uint32_t wsize = ctx->device_blocks * ctx->device_threads;
dim3 grid( ( wsize + threadsperblock - 1 ) / threadsperblock );
dim3 block( threadsperblock );
cudaMemset( ctx->d_result_nonce, 0xFF, 10 * sizeof (uint32_t ) );
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__ );
cudaMemset( ctx->d_result_count, 0, sizeof (uint32_t ) );
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__ );
cryptonight_extra_gpu_final<<<grid, block >>>( wsize, target, ctx->d_result_count, ctx->d_result_nonce, ctx->d_ctx_state );
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__ );
cudaMemcpy( rescount, ctx->d_result_count, sizeof (uint32_t ), cudaMemcpyDeviceToHost );
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__ );
cudaMemcpy( resnonce, ctx->d_result_nonce, 10 * sizeof (uint32_t ), cudaMemcpyDeviceToHost );
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__ );
for(int i=0; i < *rescount; i++)
resnonce[i] += startNonce;
}
extern "C" int cuda_get_devicecount()
{
int deviceCount = 0;
if (cudaGetDeviceCount(&deviceCount) == cudaSuccess) {
return deviceCount;
}
return 0;
}
extern "C" int cuda_get_runtime_version()
{
int runtimeVersion = 0;
if (cudaRuntimeGetVersion(&runtimeVersion) == cudaSuccess) {
return runtimeVersion;
}
return 0;
}
extern "C" int cuda_get_deviceinfo(nvid_ctx* ctx)
{
cudaError_t err;
int version;
err = cudaDriverGetVersion(&version);
if(err != cudaSuccess)
{
printf("Unable to query CUDA driver version! Is an nVidia driver installed?\n");
return 0;
}
if(version < CUDART_VERSION)
{
printf("Driver does not support CUDA %d.%d API! Update your nVidia driver!\n", CUDART_VERSION / 1000, (CUDART_VERSION % 1000) / 10);
return 0;
}
const int GPU_N = cuda_get_devicecount();
if (GPU_N == 0) {
return 0;
}
if(ctx->device_id >= GPU_N)
{
printf("Invalid device ID!\n");
return 0;
}
cudaDeviceProp props;
err = cudaGetDeviceProperties(&props, ctx->device_id);
if(err != cudaSuccess)
{
printf("\nGPU %d: %s\n%s line %d\n", ctx->device_id, cudaGetErrorString(err), __FILE__, __LINE__);
return 0;
}
ctx->device_name = strdup(props.name);
ctx->device_mpcount = props.multiProcessorCount;
ctx->device_arch[0] = props.major;
ctx->device_arch[1] = props.minor;
// set all evice option those marked as auto (-1) to a valid value
if(ctx->device_blocks == -1)
{
/* good values based of my experience
* - 3 * SMX count >=sm_30
* - 2 * SMX count for <sm_30
*/
ctx->device_blocks = props.multiProcessorCount *
( props.major < 3 ? 2 : 3 );
}
if(ctx->device_threads == -1)
{
/* sm_20 devices can only run 512 threads per cuda block
* `cryptonight_core_gpu_phase1` and `cryptonight_core_gpu_phase3` starts
* `8 * ctx->device_threads` threads per block
*/
ctx->device_threads = 64;
if(props.major < 6)
{
// try to stay under 950 threads ( 1900MiB memory per for hashes )
while(ctx->device_blocks * ctx->device_threads >= 950 && ctx->device_threads > 2)
{
ctx->device_threads /= 2;
}
}
// stay within 85% of the available RAM
while(ctx->device_threads > 2)
{
size_t freeMemory = 0;
size_t totalMemory = 0;
cudaMemGetInfo(&freeMemory, &totalMemory);
exit_if_cudaerror(ctx->device_id, __FILE__, __LINE__ );
freeMemory = (freeMemory * size_t(85)) / 100;
if( freeMemory > (size_t(ctx->device_blocks) * size_t(ctx->device_threads) * size_t(2u * 1024u * 1024u)) )
break;
else
ctx->device_threads /= 2;
}
}
return 1;
}