/* * Licensed under the GNU General Public License version 2 with exceptions. See * LICENSE file in the project root for full license information */ #include #include #include "osal_win32.h" static int64_t sysfrequency; static double qpc2usec; #define USECS_PER_SEC 1000000 int osal_getrelativetime(struct timeval *tv, struct timezone *tz) { int64_t wintime, usecs; if(!sysfrequency) { timeBeginPeriod(1); QueryPerformanceFrequency((LARGE_INTEGER *)&sysfrequency); qpc2usec = 1000000.0 / sysfrequency; } QueryPerformanceCounter((LARGE_INTEGER *)&wintime); usecs = (int64_t)((double)wintime * qpc2usec); tv->tv_sec = (long)(usecs / 1000000); tv->tv_usec = (long)(usecs - (tv->tv_sec * 1000000)); return 1; } int osal_gettimeofday(struct timeval *tv, struct timezone *tz) { FILETIME system_time; int64 system_time64, usecs; /* The offset variable is required to switch from Windows epoch (January 1, 1601) to * Unix epoch (January 1, 1970). Number of days between both epochs: 134.774 * * The time returned by GetSystemTimeAsFileTime() changes in 100 ns steps, so the * following factors are required for the conversion from days to 100 ns steps: * * 86.400 seconds per day; 1.000.000 microseconds per second; 10 * 100 ns per microsecond */ int64 offset = -134774LL * 86400LL * 1000000LL * 10LL; GetSystemTimeAsFileTime(&system_time); system_time64 = ((int64)(system_time.dwHighDateTime) << 32) + (int64)system_time.dwLowDateTime; system_time64 += offset; usecs = system_time64 / 10; tv->tv_sec = (long)(usecs / 1000000); tv->tv_usec = (long)(usecs - (tv->tv_sec * 1000000)); return 1; } ec_timet osal_current_time (void) { struct timeval current_time; ec_timet return_value; osal_gettimeofday (¤t_time, 0); return_value.sec = current_time.tv_sec; return_value.usec = current_time.tv_usec; return return_value; } void osal_time_diff(ec_timet *start, ec_timet *end, ec_timet *diff) { if (end->usec < start->usec) { diff->sec = end->sec - start->sec - 1; diff->usec = end->usec + 1000000 - start->usec; } else { diff->sec = end->sec - start->sec; diff->usec = end->usec - start->usec; } } void osal_timer_start (osal_timert *self, uint32 timeout_usec) { struct timeval start_time; struct timeval timeout; struct timeval stop_time; osal_getrelativetime (&start_time, 0); timeout.tv_sec = timeout_usec / USECS_PER_SEC; timeout.tv_usec = timeout_usec % USECS_PER_SEC; timeradd (&start_time, &timeout, &stop_time); self->stop_time.sec = stop_time.tv_sec; self->stop_time.usec = stop_time.tv_usec; } boolean osal_timer_is_expired (osal_timert *self) { struct timeval current_time; struct timeval stop_time; int is_not_yet_expired; osal_getrelativetime (¤t_time, 0); stop_time.tv_sec = self->stop_time.sec; stop_time.tv_usec = self->stop_time.usec; is_not_yet_expired = timercmp (¤t_time, &stop_time, <); return is_not_yet_expired == FALSE; } int osal_usleep(uint32 usec) { osal_timert qtime; osal_timer_start(&qtime, usec); if(usec >= 1000) { SleepEx(usec / 1000, FALSE); } while(!osal_timer_is_expired(&qtime)); return 1; } void *osal_malloc(size_t size) { return malloc(size); } void osal_free(void *ptr) { free(ptr); } int osal_thread_create(void **thandle, int stacksize, void *func, void *param) { *thandle = CreateThread(NULL, stacksize, func, param, 0, NULL); if(!thandle) { return 0; } return 1; } int osal_thread_create_rt(void **thandle, int stacksize, void *func, void *param) { int ret; ret = osal_thread_create(thandle, stacksize, func, param); if (ret) { ret = SetThreadPriority(*thandle, THREAD_PRIORITY_TIME_CRITICAL); } return ret; }