iTextSharp-LGPL/src/core/srcbc/crypto/digests/Sha1Digest.cs

286 lines
7.3 KiB
C#

using System;
namespace Org.BouncyCastle.Crypto.Digests
{
/**
* implementation of SHA-1 as outlined in "Handbook of Applied Cryptography", pages 346 - 349.
*
* It is interesting to ponder why the, apart from the extra IV, the other difference here from MD5
* is the "endienness" of the word processing!
*/
public class Sha1Digest
: GeneralDigest
{
private const int DigestLength = 20;
private int H1, H2, H3, H4, H5;
private int[] X = new int[80];
private int xOff;
public Sha1Digest()
{
Reset();
}
/**
* Copy constructor. This will copy the state of the provided
* message digest.
*/
public Sha1Digest(Sha1Digest t)
: base(t)
{
H1 = t.H1;
H2 = t.H2;
H3 = t.H3;
H4 = t.H4;
H5 = t.H5;
Array.Copy(t.X, 0, X, 0, t.X.Length);
xOff = t.xOff;
}
public override string AlgorithmName
{
get { return "SHA-1"; }
}
public override int GetDigestSize()
{
return DigestLength;
}
internal override void ProcessWord(
byte[] input,
int inOff)
{
X[xOff++] = ((input[inOff] & 0xff) << 24) | ((input[inOff + 1] & 0xff) << 16)
| ((input[inOff + 2] & 0xff) << 8) | ((input[inOff + 3] & 0xff));
if (xOff == 16)
{
ProcessBlock();
}
}
private static void UnpackWord(
int word,
byte[] outBytes,
int outOff)
{
outBytes[outOff++] = (byte)((uint)word >> 24);
outBytes[outOff++] = (byte)((uint)word >> 16);
outBytes[outOff++] = (byte)((uint)word >> 8);
outBytes[outOff++] = (byte)word;
}
internal override void ProcessLength(long bitLength)
{
if (xOff > 14)
{
ProcessBlock();
}
X[14] = (int)((ulong) bitLength >> 32);
X[15] = (int)(bitLength & 0xffffffff);
}
public override int DoFinal(
byte[] output,
int outOff)
{
Finish();
UnpackWord(H1, output, outOff);
UnpackWord(H2, output, outOff + 4);
UnpackWord(H3, output, outOff + 8);
UnpackWord(H4, output, outOff + 12);
UnpackWord(H5, output, outOff + 16);
Reset();
return DigestLength;
}
/**
* reset the chaining variables
*/
public override void Reset()
{
base.Reset();
H1 = unchecked( (int) 0x67452301 );
H2 = unchecked( (int) 0xefcdab89 );
H3 = unchecked( (int) 0x98badcfe );
H4 = unchecked( (int) 0x10325476 );
H5 = unchecked( (int) 0xc3d2e1f0 );
xOff = 0;
for (int i = 0; i != X.Length; i++) X[i] = 0;
}
//
// Additive constants
//
private const int Y1 = unchecked( (int) 0x5a827999);
private const int Y2 = unchecked( (int) 0x6ed9eba1);
private const int Y3 = unchecked( (int) 0x8f1bbcdc);
private const int Y4 = unchecked( (int) 0xca62c1d6);
private static int F(
int u,
int v,
int w)
{
return ((u & v) | ((~u) & w));
}
private static int H(
int u,
int v,
int w)
{
return (u ^ v ^ w);
}
private static int G(
int u,
int v,
int w)
{
return ((u & v) | (u & w) | (v & w));
}
internal override void ProcessBlock()
{
//
// expand 16 word block into 80 word block.
//
for (int i = 16; i < 80; i++)
{
int t = X[i - 3] ^ X[i - 8] ^ X[i - 14] ^ X[i - 16];
X[i] = t << 1 | (int)((uint)t >> 31);
}
//
// set up working variables.
//
int A = H1;
int B = H2;
int C = H3;
int D = H4;
int E = H5;
//
// round 1
//
int idx = 0;
for (int j = 0; j < 4; j++)
{
// E = rotateLeft(A, 5) + F(B, C, D) + E + X[idx++] + Y1
// B = rotateLeft(B, 30)
E += (A << 5 | (int)((uint)A >> 27)) + F(B, C, D) + X[idx++] + Y1;
B = B << 30 | (int)((uint)B >> 2);
D += (E << 5 | (int)((uint)E >> 27)) + F(A, B, C) + X[idx++] + Y1;
A = A << 30 | (int)((uint)A >> 2);
C += (D << 5 | (int)((uint)D >> 27)) + F(E, A, B) + X[idx++] + Y1;
E = E << 30 | (int)((uint)E >> 2);
B += (C << 5 | (int)((uint)C >> 27)) + F(D, E, A) + X[idx++] + Y1;
D = D << 30 | (int)((uint)D >> 2);
A += (B << 5 | (int)((uint)B >> 27)) + F(C, D, E) + X[idx++] + Y1;
C = C << 30 | (int)((uint)C >> 2);
}
//
// round 2
//
for (int j = 0; j < 4; j++)
{
// E = rotateLeft(A, 5) + H(B, C, D) + E + X[idx++] + Y2
// B = rotateLeft(B, 30)
E += (A << 5 | (int)((uint)A >> 27)) + H(B, C, D) + X[idx++] + Y2;
B = B << 30 | (int)((uint)B >> 2);
D += (E << 5 | (int)((uint)E >> 27)) + H(A, B, C) + X[idx++] + Y2;
A = A << 30 | (int)((uint)A >> 2);
C += (D << 5 | (int)((uint)D >> 27)) + H(E, A, B) + X[idx++] + Y2;
E = E << 30 | (int)((uint)E >> 2);
B += (C << 5 | (int)((uint)C >> 27)) + H(D, E, A) + X[idx++] + Y2;
D = D << 30 | (int)((uint)D >> 2);
A += (B << 5 | (int)((uint)B >> 27)) + H(C, D, E) + X[idx++] + Y2;
C = C << 30 | (int)((uint)C >> 2);
}
//
// round 3
//
for (int j = 0; j < 4; j++)
{
// E = rotateLeft(A, 5) + G(B, C, D) + E + X[idx++] + Y3
// B = rotateLeft(B, 30)
E += (A << 5 | (int)((uint)A >> 27)) + G(B, C, D) + X[idx++] + Y3;
B = B << 30 | (int)((uint)B >> 2);
D += (E << 5 | (int)((uint)E >> 27)) + G(A, B, C) + X[idx++] + Y3;
A = A << 30 | (int)((uint)A >> 2);
C += (D << 5 | (int)((uint)D >> 27)) + G(E, A, B) + X[idx++] + Y3;
E = E << 30 | (int)((uint)E >> 2);
B += (C << 5 | (int)((uint)C >> 27)) + G(D, E, A) + X[idx++] + Y3;
D = D << 30 | (int)((uint)D >> 2);
A += (B << 5 | (int)((uint)B >> 27)) + G(C, D, E) + X[idx++] + Y3;
C = C << 30 | (int)((uint)C >> 2);
}
//
// round 4
//
for (int j = 0; j <= 3; j++)
{
// E = rotateLeft(A, 5) + H(B, C, D) + E + X[idx++] + Y4
// B = rotateLeft(B, 30)
E += (A << 5 | (int)((uint)A >> 27)) + H(B, C, D) + X[idx++] + Y4;
B = B << 30 | (int)((uint)B >> 2);
D += (E << 5 | (int)((uint)E >> 27)) + H(A, B, C) + X[idx++] + Y4;
A = A << 30 | (int)((uint)A >> 2);
C += (D << 5 | (int)((uint)D >> 27)) + H(E, A, B) + X[idx++] + Y4;
E = E << 30 | (int)((uint)E >> 2);
B += (C << 5 | (int)((uint)C >> 27)) + H(D, E, A) + X[idx++] + Y4;
D = D << 30 | (int)((uint)D >> 2);
A += (B << 5 | (int)((uint)B >> 27)) + H(C, D, E) + X[idx++] + Y4;
C = C << 30 | (int)((uint)C >> 2);
}
H1 += A;
H2 += B;
H3 += C;
H4 += D;
H5 += E;
//
// reset start of the buffer.
//
xOff = 0;
for (int i = 0; i < 16; i++)
{
X[i] = 0;
}
}
}
}