qemu-patch-raspberry4/docs/specs/acpi_cpu_hotplug.txt

102 lines
4.5 KiB
Plaintext
Raw Normal View History

QEMU<->ACPI BIOS CPU hotplug interface
--------------------------------------
QEMU supports CPU hotplug via ACPI. This document
describes the interface between QEMU and the ACPI BIOS.
ACPI BIOS GPE.2 handler is dedicated for notifying OS about CPU hot-add
and hot-remove events.
============================================
Legacy ACPI CPU hotplug interface registers:
--------------------------------------------
CPU present bitmap for:
ICH9-LPC (IO port 0x0cd8-0xcf7, 1-byte access)
PIIX-PM (IO port 0xaf00-0xaf1f, 1-byte access)
One bit per CPU. Bit position reflects corresponding CPU APIC ID. Read-only.
The first DWORD in bitmap is used in write mode to switch from legacy
to new CPU hotplug interface, write 0 into it to do switch.
---------------------------------------------------------------
QEMU sets corresponding CPU bit on hot-add event and issues SCI
with GPE.2 event set. CPU present map is read by ACPI BIOS GPE.2 handler
to notify OS about CPU hot-add events. CPU hot-remove isn't supported.
=====================================
ACPI CPU hotplug interface registers:
-------------------------------------
Register block base address:
ICH9-LPC IO port 0x0cd8
PIIX-PM IO port 0xaf00
Register block size:
ACPI_CPU_HOTPLUG_REG_LEN = 12
All accesses to registers described below, imply little-endian byte order.
Reserved resisters behavior:
- write accesses are ignored
- read accesses return all bits set to 0.
The last stored value in 'CPU selector' must refer to a possible CPU, otherwise
- reads from any register return 0
- writes to any other register are ignored until valid value is stored into it
On QEMU start, 'CPU selector' is initialized to a valid value, on reset it
keeps the current value.
read access:
offset:
[0x0-0x3] Command data 2: (DWORD access)
if value last stored in 'Command field':
0: reads as 0x0
other values: reserved
[0x4] CPU device status fields: (1 byte access)
bits:
0: Device is enabled and may be used by guest
1: Device insert event, used to distinguish device for which
no device check event to OSPM was issued.
It's valid only when bit 0 is set.
2: Device remove event, used to distinguish device for which
no device eject request to OSPM was issued.
3-7: reserved and should be ignored by OSPM
[0x5-0x7] reserved
[0x8] Command data: (DWORD access)
contains 0 unless value last stored in 'Command field' is one of:
0: contains 'CPU selector' value of a CPU with pending event[s]
write access:
offset:
[0x0-0x3] CPU selector: (DWORD access)
selects active CPU device. All following accesses to other
registers will read/store data from/to selected CPU.
[0x4] CPU device control fields: (1 byte access)
bits:
0: reserved, OSPM must clear it before writing to register.
1: if set to 1 clears device insert event, set by OSPM
after it has emitted device check event for the
selected CPU device
2: if set to 1 clears device remove event, set by OSPM
after it has emitted device eject request for the
selected CPU device
3: if set to 1 initiates device eject, set by OSPM when it
triggers CPU device removal and calls _EJ0 method
4-7: reserved, OSPM must clear them before writing to register
[0x5] Command field: (1 byte access)
value:
0: selects a CPU device with inserting/removing events and
following reads from 'Command data' register return
selected CPU ('CPU selector' value).
If no CPU with events found, the current 'CPU selector' doesn't
change and corresponding insert/remove event flags are not modified.
1: following writes to 'Command data' register set OST event
register in QEMU
2: following writes to 'Command data' register set OST status
register in QEMU
other values: reserved
[0x6-0x7] reserved
[0x8] Command data: (DWORD access)
if last stored 'Command field' value:
1: stores value into OST event register
2: stores value into OST status register, triggers
ACPI_DEVICE_OST QMP event from QEMU to external applications
with current values of OST event and status registers.
other values: reserved