qemu-patch-raspberry4/target/xtensa/helper.c
Max Filippov 7e5e5a6302 target/xtensa: extract MMU helpers
Move MMU-related helper functions from op_helper.c and helper.c to
mmu_helper.c. No functional changes.

Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
2019-01-13 23:34:57 -08:00

331 lines
10 KiB
C

/*
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/gdbstub.h"
#include "qemu/host-utils.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif
static struct XtensaConfigList *xtensa_cores;
static void xtensa_core_class_init(ObjectClass *oc, void *data)
{
CPUClass *cc = CPU_CLASS(oc);
XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
const XtensaConfig *config = data;
xcc->config = config;
/* Use num_core_regs to see only non-privileged registers in an unmodified
* gdb. Use num_regs to see all registers. gdb modification is required
* for that: reset bit 0 in the 'flags' field of the registers definitions
* in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
*/
cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
}
static void init_libisa(XtensaConfig *config)
{
unsigned i, j;
unsigned opcodes;
unsigned formats;
config->isa = xtensa_isa_init(config->isa_internal, NULL, NULL);
assert(xtensa_isa_maxlength(config->isa) <= MAX_INSN_LENGTH);
opcodes = xtensa_isa_num_opcodes(config->isa);
formats = xtensa_isa_num_formats(config->isa);
config->opcode_ops = g_new(XtensaOpcodeOps *, opcodes);
for (i = 0; i < formats; ++i) {
assert(xtensa_format_num_slots(config->isa, i) <= MAX_INSN_SLOTS);
}
for (i = 0; i < opcodes; ++i) {
const char *opc_name = xtensa_opcode_name(config->isa, i);
XtensaOpcodeOps *ops = NULL;
assert(xtensa_opcode_num_operands(config->isa, i) <= MAX_OPCODE_ARGS);
if (!config->opcode_translators) {
ops = xtensa_find_opcode_ops(&xtensa_core_opcodes, opc_name);
} else {
for (j = 0; !ops && config->opcode_translators[j]; ++j) {
ops = xtensa_find_opcode_ops(config->opcode_translators[j],
opc_name);
}
}
#ifdef DEBUG
if (ops == NULL) {
fprintf(stderr,
"opcode translator not found for %s's opcode '%s'\n",
config->name, opc_name);
}
#endif
config->opcode_ops[i] = ops;
}
}
void xtensa_finalize_config(XtensaConfig *config)
{
if (config->isa_internal) {
init_libisa(config);
}
if (config->gdb_regmap.num_regs == 0 ||
config->gdb_regmap.num_core_regs == 0) {
unsigned n_regs = 0;
unsigned n_core_regs = 0;
xtensa_count_regs(config, &n_regs, &n_core_regs);
if (config->gdb_regmap.num_regs == 0) {
config->gdb_regmap.num_regs = n_regs;
}
if (config->gdb_regmap.num_core_regs == 0) {
config->gdb_regmap.num_core_regs = n_core_regs;
}
}
}
void xtensa_register_core(XtensaConfigList *node)
{
TypeInfo type = {
.parent = TYPE_XTENSA_CPU,
.class_init = xtensa_core_class_init,
.class_data = (void *)node->config,
};
node->next = xtensa_cores;
xtensa_cores = node;
type.name = g_strdup_printf(XTENSA_CPU_TYPE_NAME("%s"), node->config->name);
type_register(&type);
g_free((gpointer)type.name);
}
static uint32_t check_hw_breakpoints(CPUXtensaState *env)
{
unsigned i;
for (i = 0; i < env->config->ndbreak; ++i) {
if (env->cpu_watchpoint[i] &&
env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
}
}
return 0;
}
void xtensa_breakpoint_handler(CPUState *cs)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
CPUXtensaState *env = &cpu->env;
if (cs->watchpoint_hit) {
if (cs->watchpoint_hit->flags & BP_CPU) {
uint32_t cause;
cs->watchpoint_hit = NULL;
cause = check_hw_breakpoints(env);
if (cause) {
debug_exception_env(env, cause);
}
cpu_loop_exit_noexc(cs);
}
}
}
void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
XtensaConfigList *core = xtensa_cores;
cpu_fprintf(f, "Available CPUs:\n");
for (; core; core = core->next) {
cpu_fprintf(f, " %s\n", core->config->name);
}
}
#ifndef CONFIG_USER_ONLY
static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
{
if (xtensa_option_enabled(env->config,
XTENSA_OPTION_RELOCATABLE_VECTOR)) {
return vector - env->config->vecbase + env->sregs[VECBASE];
} else {
return vector;
}
}
/*!
* Handle penging IRQ.
* For the high priority interrupt jump to the corresponding interrupt vector.
* For the level-1 interrupt convert it to either user, kernel or double
* exception with the 'level-1 interrupt' exception cause.
*/
static void handle_interrupt(CPUXtensaState *env)
{
int level = env->pending_irq_level;
if (level > xtensa_get_cintlevel(env) &&
level <= env->config->nlevel &&
(env->config->level_mask[level] &
env->sregs[INTSET] &
env->sregs[INTENABLE])) {
CPUState *cs = CPU(xtensa_env_get_cpu(env));
if (level > 1) {
env->sregs[EPC1 + level - 1] = env->pc;
env->sregs[EPS2 + level - 2] = env->sregs[PS];
env->sregs[PS] =
(env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
env->pc = relocated_vector(env,
env->config->interrupt_vector[level]);
} else {
env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
if (env->sregs[PS] & PS_EXCM) {
if (env->config->ndepc) {
env->sregs[DEPC] = env->pc;
} else {
env->sregs[EPC1] = env->pc;
}
cs->exception_index = EXC_DOUBLE;
} else {
env->sregs[EPC1] = env->pc;
cs->exception_index =
(env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
}
env->sregs[PS] |= PS_EXCM;
}
env->exception_taken = 1;
}
}
/* Called from cpu_handle_interrupt with BQL held */
void xtensa_cpu_do_interrupt(CPUState *cs)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
CPUXtensaState *env = &cpu->env;
if (cs->exception_index == EXC_IRQ) {
qemu_log_mask(CPU_LOG_INT,
"%s(EXC_IRQ) level = %d, cintlevel = %d, "
"pc = %08x, a0 = %08x, ps = %08x, "
"intset = %08x, intenable = %08x, "
"ccount = %08x\n",
__func__, env->pending_irq_level, xtensa_get_cintlevel(env),
env->pc, env->regs[0], env->sregs[PS],
env->sregs[INTSET], env->sregs[INTENABLE],
env->sregs[CCOUNT]);
handle_interrupt(env);
}
switch (cs->exception_index) {
case EXC_WINDOW_OVERFLOW4:
case EXC_WINDOW_UNDERFLOW4:
case EXC_WINDOW_OVERFLOW8:
case EXC_WINDOW_UNDERFLOW8:
case EXC_WINDOW_OVERFLOW12:
case EXC_WINDOW_UNDERFLOW12:
case EXC_KERNEL:
case EXC_USER:
case EXC_DOUBLE:
case EXC_DEBUG:
qemu_log_mask(CPU_LOG_INT, "%s(%d) "
"pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
__func__, cs->exception_index,
env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
if (env->config->exception_vector[cs->exception_index]) {
env->pc = relocated_vector(env,
env->config->exception_vector[cs->exception_index]);
env->exception_taken = 1;
} else {
qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
__func__, env->pc, cs->exception_index);
}
break;
case EXC_IRQ:
break;
default:
qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
__func__, env->pc, cs->exception_index);
break;
}
check_interrupts(env);
}
#else
void xtensa_cpu_do_interrupt(CPUState *cs)
{
}
#endif
bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
if (interrupt_request & CPU_INTERRUPT_HARD) {
cs->exception_index = EXC_IRQ;
xtensa_cpu_do_interrupt(cs);
return true;
}
return false;
}
#ifdef CONFIG_USER_ONLY
int xtensa_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw,
int mmu_idx)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
CPUXtensaState *env = &cpu->env;
qemu_log_mask(CPU_LOG_INT,
"%s: rw = %d, address = 0x%08" VADDR_PRIx ", size = %d\n",
__func__, rw, address, size);
env->sregs[EXCVADDR] = address;
env->sregs[EXCCAUSE] = rw ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE;
cs->exception_index = EXC_USER;
return 1;
}
#else
void xtensa_runstall(CPUXtensaState *env, bool runstall)
{
CPUState *cpu = CPU(xtensa_env_get_cpu(env));
env->runstall = runstall;
cpu->halted = runstall;
if (runstall) {
cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
} else {
cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);
}
}
#endif