CLBlast/test/routines/levelx/xhad.hpp

174 lines
7.6 KiB
C++
Raw Normal View History

// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
// Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements a class with static methods to describe the Xhad routine. Examples of
// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
// static methods are used by the correctness tester and the performance tester.
//
// =================================================================================================
#ifndef CLBLAST_TEST_ROUTINES_XHAD_H_
#define CLBLAST_TEST_ROUTINES_XHAD_H_
#include "test/routines/common.hpp"
namespace clblast {
// =================================================================================================
template <typename T>
StatusCode RunReference(const Arguments<T> &args, BuffersHost<T> &buffers_host) {
for (auto index = size_t{0}; index < args.n; ++index) {
const auto x = buffers_host.x_vec[index * args.x_inc + args.x_offset];
const auto y = buffers_host.y_vec[index * args.y_inc + args.y_offset];
const auto z = buffers_host.c_mat[index]; // * args.z_inc + args.z_offset];
buffers_host.c_mat[index] = args.alpha * x * y + args.beta * z;
}
return StatusCode::kSuccess;
}
// Half-precision version calling the above reference implementation after conversions
template <>
StatusCode RunReference<half>(const Arguments<half> &args, BuffersHost<half> &buffers_host) {
auto x_buffer2 = HalfToFloatBuffer(buffers_host.x_vec);
auto y_buffer2 = HalfToFloatBuffer(buffers_host.y_vec);
auto c_buffer2 = HalfToFloatBuffer(buffers_host.c_mat);
auto dummy = std::vector<float>(0);
auto dummy_uint = std::vector<unsigned int>(0);
auto buffers2 = BuffersHost<float>{x_buffer2, y_buffer2, dummy, dummy, c_buffer2, dummy, dummy, dummy_uint};
auto args2 = Arguments<float>();
args2.x_size = args.x_size; args2.y_size = args.y_size; args2.c_size = args.c_size;
args2.x_inc = args.x_inc; args2.y_inc = args.y_inc; args2.n = args.n;
args2.x_offset = args.x_offset; args2.y_offset = args.y_offset;
args2.alpha = HalfToFloat(args.alpha); args2.beta = HalfToFloat(args.beta);
auto status = RunReference(args2, buffers2);
FloatToHalfBuffer(buffers_host.c_mat, buffers2.c_mat);
return status;
}
// =================================================================================================
// See comment at top of file for a description of the class
template <typename T>
class TestXhad {
public:
// The BLAS level: 4 for the extra routines (note: tested with matrix-size values for 'n')
static size_t BLASLevel() { return 4; }
// The list of arguments relevant for this routine
static std::vector<std::string> GetOptions() {
return {kArgN,
kArgXInc, kArgYInc,
kArgXOffset, kArgYOffset,
kArgAlpha, kArgBeta};
}
static std::vector<std::string> BuffersIn() { return {kBufVecX, kBufVecY, kBufMatC}; }
static std::vector<std::string> BuffersOut() { return {kBufMatC}; }
// Describes how to obtain the sizes of the buffers
static size_t GetSizeX(const Arguments<T> &args) {
return args.n * args.x_inc + args.x_offset;
}
static size_t GetSizeY(const Arguments<T> &args) {
return args.n * args.y_inc + args.y_offset;
}
static size_t GetSizeC(const Arguments<T> &args) { // used for 'vector z'
return args.n; // * args.z_inc + args.z_offset;
}
// Describes how to set the sizes of all the buffers
static void SetSizes(Arguments<T> &args, Queue&) {
args.x_size = GetSizeX(args);
args.y_size = GetSizeY(args);
args.c_size = GetSizeC(args); // used for 'vector z'
}
// Describes what the default values of the leading dimensions of the matrices are
static size_t DefaultLDA(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDB(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t DefaultLDC(const Arguments<T> &) { return 1; } // N/A for this routine
// Describes which transpose options are relevant for this routine
using Transposes = std::vector<Transpose>;
static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine
static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine
// Describes how to prepare the input data
static void PrepareData(const Arguments<T>&, Queue&, const int, std::vector<T>&,
std::vector<T>&, std::vector<T>&, std::vector<T>&, std::vector<T>&,
std::vector<T>&, std::vector<T>&) {} // N/A for this routine
// Describes how to run the CLBlast routine
static StatusCode RunRoutine(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
#ifdef OPENCL_API
auto queue_plain = queue();
auto event = cl_event{};
auto status = Had(args.n, args.alpha,
buffers.x_vec(), args.x_offset, args.x_inc,
buffers.y_vec(), args.y_offset, args.y_inc, args.beta,
buffers.c_mat(), 0, 1, // used for 'vector z'
&queue_plain, &event);
if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); }
#elif CUDA_API
auto status = Had(args.n, args.alpha,
buffers.x_vec(), args.x_offset, args.x_inc,
buffers.y_vec(), args.y_offset, args.y_inc, args.beta,
buffers.c_mat(), 0, 1, // used for 'vector z'
queue.GetContext()(), queue.GetDevice()());
cuStreamSynchronize(queue());
#endif
return status;
}
// Describes how to run a naive version of the routine (for correctness/performance comparison).
// Note that a proper clBLAS or CPU BLAS comparison is not available for non-BLAS routines.
static StatusCode RunReference1(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
auto buffers_host = BuffersHost<T>();
DeviceToHost(args, buffers, buffers_host, queue, BuffersIn());
const auto status = RunReference(args, buffers_host);
HostToDevice(args, buffers, buffers_host, queue, BuffersOut());
return status;
}
static StatusCode RunReference2(const Arguments<T> &args, BuffersHost<T> &buffers_host, Queue&) {
return RunReference(args, buffers_host);
}
static StatusCode RunReference3(const Arguments<T> &, BuffersCUDA<T> &, Queue &) {
return StatusCode::kUnknownError;
}
// Describes how to download the results of the computation (more importantly: which buffer)
static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
std::vector<T> result(args.c_size, static_cast<T>(0));
buffers.c_mat.Read(queue, args.c_size, result);
return result;
}
// Describes how to compute the indices of the result buffer
static size_t ResultID1(const Arguments<T> &args) { return args.n; }
static size_t ResultID2(const Arguments<T> &) { return 1; } // N/A for this routine
static size_t GetResultIndex(const Arguments<T> &, const size_t id1, const size_t) {
return id1; // * args.z_inc + args.z_offset;
}
// Describes how to compute performance metrics
static size_t GetFlops(const Arguments<T> &args) {
return 4 * args.n;
}
static size_t GetBytes(const Arguments<T> &args) {
return (4 * args.n) * sizeof(T);
}
};
// =================================================================================================
} // namespace clblast
// CLBLAST_TEST_ROUTINES_XHAD_H_
#endif